D. J. H. Garling is Emeritus Reader in Mathematical Analysis at the University of Cambridge and Fellow of St John's College, Cambridge. He has fifty years' experience of teaching undergraduate students in most areas of pure mathematics, but particularly in analysis.
Introduction
Part I. Complex Analysis: 1. Holomorphic functions and analytic functions
2. The topology of the complex plane
3. Complex integration
4. Zeros and singularities
5. The calculus of residues
6. Conformal transformations
7. Applications
Part II. Measure and Integration: 8. Lebesgue measure on R
9. Measurable spaces and measurable functions
10. Integration
11. Constructing measures
12. Signed measures and complex measures
13. Measures on metric spaces
14. Differentiation
15. Applications
Index.
Introduction; Part I. Prologue: The Foundations of Analysis: 1. The axioms of set theory; 2. Number systems; Part II. Functions of a Real Variable: 3. Convergent sequences; 4. Infinite series; 5. The topology of R; 6. Continuity; 7. Differentiation; 8. Integration; 9. Introduction to Fourier series; 10. Some applications; Appendix: Zorn's lemma and the well-ordering principle; Index.