Contents: Prerequisite Set Theory; Chapter 1. Groups; 2. Abelian Groups; 3. Categories and Functors; 4. Modules; 5. Integral Domains; 6. Semisimple Rings; 7. The Functors Ext and Tor. List of Symbols and Bibliography. Index.
Contents: Prerequisite Set Theory; Chapter 1. Groups; 2. Abelian Groups; 3. Categories and Functors; 4. Modules; 5. Integral Domains; 6. Semisimple Rings; 7. The Functors Ext and Tor. List of Symbols and Bibliography. Index.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Peter John Hilton was a British mathematician, noted for his contributions to homotopy theory and for code-breaking during the Second World War. Yel-Chiang Wu is the author of A Course in Modern Algebra, published by Wiley.
Inhaltsangabe
Partial table of contents: GROUPS. Cosets, Lagrange's Theorem, and Normal Subgroups. Direct and Free Products. ABELIAN GROUPS. Special Features of Commutative Groups. Exact Sequences of Abelian Groups. CATEGORIES AND FUNCTORS. Natural Transformations. Duality Principle. Adjoint Functors. MODULES. Rings. The Functor Hom. INTEGRAL DOMAINS. SEMI-SIMPLE RINGS. The Morita Theorem. THE FUNCTORS EXT AND TOR. List of Symbols. Bibliography. Index.
Partial table of contents: GROUPS. Cosets, Lagrange's Theorem, and Normal Subgroups. Direct and Free Products. ABELIAN GROUPS. Special Features of Commutative Groups. Exact Sequences of Abelian Groups. CATEGORIES AND FUNCTORS. Natural Transformations. Duality Principle. Adjoint Functors. MODULES. Rings. The Functor Hom. INTEGRAL DOMAINS. SEMI-SIMPLE RINGS. The Morita Theorem. THE FUNCTORS EXT AND TOR. List of Symbols. Bibliography. Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826