Preface
Sets and groups
1. Background: metric spaces
2. Topological spaces
3. Continuous functions
4. Induced topology
5. Quotient topology (and groups acting on spaces)
6. Product spaces
7. Compact spaces
8. Hausdorff spaces
9. Connected spaces
10. The pancake problems
11. Manifolds and surfaces
12. Paths and path connected spaces
12A. The Jordan curve theorem
13. Homotopy of continuous mappings
14. 'Multiplication' of paths
15. The fundamental group
16. The fundamental group of a circle
17. Covering spaces
18. The fundamental group of a covering space
19. The fundamental group of an orbit space
20. The Borsuk-Ulam and ham-sandwhich theorems
21. More on covering spaces: lifting theorems
22. More on covering spaces: existence theorems
23. The Seifert_Van Kampen theorem: I Generators
24. The Seifert_Van Kampen theorem: II Relations
25. The Seifert_Van Kampen theorem: III Calculations
26. The fundamental group of a surface
27. Knots: I Background and torus knots
27. Knots : II Tame knots
28A. Table of Knots
29. Singular homology: an introduction
30. Suggestions for further reading
Index.