Gabor Kunstatter, Saurya Das
A First Course on Symmetry, Special Relativity and Quantum Mechanics
The Foundations of Physics
Gabor Kunstatter, Saurya Das
A First Course on Symmetry, Special Relativity and Quantum Mechanics
The Foundations of Physics
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.
Students are introduced to several topics not typically covered until much…mehr
Andere Kunden interessierten sich auch für
- Gabor KunstatterA First Course on Symmetry, Special Relativity and Quantum Mechanics63,99 €
- Michael TsamparlisSpecial Relativity49,99 €
- Michael TsamparlisSpecial Relativity67,99 €
- Øyvind GrønIntroduction to Einstein¿s Theory of Relativity52,99 €
- Michael H. SoffelApplied General Relativity44,99 €
- Michael H. SoffelApplied General Relativity64,99 €
- Gianluca CalcagniClassical and Quantum Cosmology60,99 €
-
-
-
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.
Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.
Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content.
The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.
Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content.
The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Undergraduate Lecture Notes in Physics
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-030-55419-4
- 1st ed. 2020
- Seitenzahl: 390
- Erscheinungstermin: 20. Oktober 2020
- Englisch
- Abmessung: 23mm x 157mm x 237mm
- Gewicht: 634g
- ISBN-13: 9783030554194
- Artikelnr.: 59750875
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Undergraduate Lecture Notes in Physics
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-030-55419-4
- 1st ed. 2020
- Seitenzahl: 390
- Erscheinungstermin: 20. Oktober 2020
- Englisch
- Abmessung: 23mm x 157mm x 237mm
- Gewicht: 634g
- ISBN-13: 9783030554194
- Artikelnr.: 59750875
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Gabor Kunstatter is a theoretical physicist who has worked on general relativity, gauge theory quantization, finite temperature quantum field theory, quantum computing and quantum gravity. His current research focuses on the quantum mechanics of black holes, quantum information and effective theories for non-singular black hole evaporation and evaporation. Dr. Kunstatter is Professor Emeritus at the University of Winnipeg and Adjunct Professor at the University of Victoria, Simon Fraser University and the University of Manitoba. He has been a visiting scientist at a variety of institutions, including M.I.T., Université de Paris (Orsay), UNAM (Mexico), University of Nottingham and CECS (Chile). Dr. Kunstatter has also served as the President of the Canadian Association of Physicists and as Dean of Science at the University of Winnipeg.
Saurya Das is a theoretical physicist whose research areas include quantum gravity theory and phenomenology and cosmology. He has worked on problems in black hole physics, testing signatures of quantum gravity in the laboratory and on dark matter and dark energy, on which he has published more than 80 papers. After doing postdoctoral research at the Pennsylvania State University and the Universities of Winnipeg and New Brunswick, Dr. Das joined the faculty the University of Lethbridge, Canada in 2003, where he is now a full professor.
Saurya Das is a theoretical physicist whose research areas include quantum gravity theory and phenomenology and cosmology. He has worked on problems in black hole physics, testing signatures of quantum gravity in the laboratory and on dark matter and dark energy, on which he has published more than 80 papers. After doing postdoctoral research at the Pennsylvania State University and the Universities of Winnipeg and New Brunswick, Dr. Das joined the faculty the University of Lethbridge, Canada in 2003, where he is now a full professor.
1 Introduction 91.1 The goal of physics . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The connection between physics and mathematics . . . . . . . 101.3 Paradigm shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Correspondence Principle . . . . . . . . . . . . . . . . . . 162 Symmetry and Physics 172.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 172.2 What is Symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Role of Symmetry in Physics . . . . . . . . . . . . . . . . . . . 182.3.1 Symmetry as a guiding principle . . . . . . . . . . . . . 182.3.2 Symmetry and Conserved Quantities: Noether's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Symmetry as a tool for simplifying problems . . . . . . 192.4 Symmetries were made to be broken . . . . . . . . . . . . . . 202.4.1 Spacetime symmetries . . . . . . . . . . . . . . . . . . 202.4.2 Parity violation . . . . . . . . . . . . . . . . . . . . . . 212.4.3 Spontaneously broken symmetries . . . . . . . . . . . . 242.4.4 Variational calculations: Lifeguards and light rays . . . 273 Formal Aspects of Symmetry 303.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Symmetries and Operations . . . . . . . . . . . . . . . . . . . 303.2.1 Denition of a symmetry operation . . . . . . . . . . . 303.2.2 Rules obeyed by symmetry operations . . . . . . . . . 323.2.3 Multiplication tables . . . . . . . . . . . . . . . . . . . 353.2.4 Symmetry and group theory . . . . . . . . . . . . . . . 363.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 The identity operation . . . . . . . . . . . . . . . . . . 373.3.2 Permutations of two identical objects . . . . . . . . . . 373.3.3 Permutations of three identical objects . . . . . . . . . 383.3.4 Rotations of regular polygons . . . . . . . . . . . . . . 393.4 Continuous vs discrete symmetries . . . . . . . . . . . . . . . 403.5 Symmetries and Conserved Quantities:Noether's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Supplementary: Variational Mechanics and the Proof of Noether'sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6.1 Variational Mechanics: Principle of Least Action . . . . 423.6.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 473.6.3 Proof of Noether's Theorem . . . . . . . . . . . . . . . 484 Symmetries and Linear Transformations 524.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Review of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.1 Coordinate free denitions . . . . . . . . . . . . . . . . 534.2.2 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 584.2.3 Vector operations in component form . . . . . . . . . . 594.2.4 Position vector . . . . . . . . . . . . . . . . . . . . . . 604.2.5 Dierentiation of vectors: velocity and acceleration . . 624.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 634.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . 644.3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 674.4 Linear Transformations and matrices . . . . . . . . . . . . . . 684.4.1 Linear transformations as matrices . . . . . . . . . . . 684.4.2 Identity Transformation and Inverses . . . . . . . . . . 704.4.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.5 Matrix Representation of Permutations of Three Objects 734.5 Pythagoras and Geometry . . . . . . . . . . . . . . . . . . . . 745 Special Relativity I: The Basics 775.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2.1 Frames5.2.2 Spacetime Diagrams . . . . . . . . . . . . . . . . . . . 785.2.3 Newtonian Relativity and Galilean Transformations . . 835.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3.1 The Fundamental Postulate . . . . . . . . . . . . . . . 855.3.2 The problem with Galilean Relativity . . . . . . . . . . 855.3.3 Michelson-Morley Experiment . . . . . . . . . . . . . . 875.3.4 Maxwell's Equations . . . . . . . . . . . . . . . . . . . 905.4 Summary of Consequences . . . . . . . . . . . . . . . . . . . . 915.5 Relativity of Simultaneity . . . . . . . . . . . . . . . . . . . . 925.6 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.6.1 Derivation: . . . . . . . . . . . . . . . . . . . . . . . . 975.6.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . 995.6.3 Experimental Conrmation . . . . . . . . . . . . . . . 1015.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 1025.7 Lorentz Contraction . . . . . . . . . . . . . . . . . . . . . . . 1045.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.3 Proper Length and Proper Distance. . . . . . . . . . . 1045.7.4 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Special Relativity II: In Depth 1106.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1106.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 1106.2.1 Derivation of general form . . . . . . . . . . . . . . . . 1106.2.2 Properties of Lorentz Transformations . . . . . . . . . 1136.2.3 Lorentzian Geometry . . . . . . . . . . . . . . . . . . . 1166.3 The Light Cone . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4 Proper time revisited . . . . . . . . . . . . . . . . . . . . . . . 1206.5 Relativistic Addition of Velocities . . . . . . . . . . . . . . . . 1226.6 Relativistic Doppler Shift . . . . . . . . . . . . . . . . . . . . . 1246.6.1 Non-relativistic Doppler Shift Review . . . . . . . . . . 1246.6.2 Relativistic Doppler Shift . . . . . . . . . . . . . . . . 1246.7 Relativistic Energy and Momentum . . . . . . . . . . . . . . . 1276.7.1 Relativistic Energy Momentum Conservation . . . . . . 1276.7.2 Relativistic Inertia . . . . . . . . . . . . . . . . . . . . 1286.7.3 Relativistic Energy . . . . . . . . . . . . . . . . . . . . 1296.7.4 Relativistic Three-Momentum . . . . . . . . . . . . . . 1296.7.5 Relationship Between Relativistic Energy and Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.7.6 Kinetic energy: . . . . . . . . . . . . . . . . . . . . . . 1306.7.7 Massless particles . . . . . . . . . . . . . . . . . . . . 1316.8 Space-time Vectors . . . . . . . . . . . . . . . . . . . . . . . . 1336.8.1 Position Four-Vector: . . . . . . . . . . . . . . . . . . . 1346.8.2 Four-momentum: . . . . . . . . . . . . . . . . . . . . . 1356.8.3 Null four-vectors . . . . . . . . . . . . . . . . . . . . . 1376.8.4 Relativistic Scattering . . . . . . . . . . . . . . . . . . 1376.8.5 More Examples . . . . . . . . . . . . . . . . . . . . . . 1386.9 Relativistic Units . . . . . . . . . . . . . . . . . . . . . . . . . 1396.10 Symmetry Redux . . . . . . . . . . . . . . . . . . . . . . . . . 1406.10.1 Matrix form of Lorentz Transformations . . . . . . . . 1406.10.2 Lorentz Transformations as a Symmetry Group . . . . 1426.11 Supplementary: Four vectors and tensors in covariant form . . 1437 General Relativity 1497.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1497.2 Problems with Newtonian Gravity . . . . . . . . . . . . . . . . 1497.2.1 Review of Newtonian Gravity . . . . . . . . . . . . . . 1497.2.2 Perihelion Shift of Mercury . . . . . . . . . . . . . . . 1517.2.3 Action at a Distance . . . . . . . . . . . . . . . . . . . 1527.2.4 The Puzzle of Inertial vs Gravitational Mass . . . . . . 1537.3 Einstein's Thinking: the Strong Principle of Equivalence . . . 1537.4 Geometry of Spacetime . . . . . . . . . . . . . . . . . . . . . . 1557.5 Some Consequences of General Relativity: . . . . . . . . . . . 1587.6 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 1597.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1597.6.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 1607.6.3 Recent Observations . . . . . . . . . . . . . . . . . . . 1617.7 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1647.7.4 Further Information . . . . . . . . . . . . . . . . . . . 1667.8 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 Introduction to the Quantum 1708.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1708.2 Light as particles . . . . . . . . . . . . . . . . . . . . . . . . . 1718.2.1 Review: Light as Waves . . . . . . . . . . . . . . . . . 1718.2.2 Photoelectric Eect . . . . . . . . . . . . . . . . . . . . 1718.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 1758.3 Blackbody Radiation and the Ultraviolet Catastrophe . . . . . 1798.3.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 1798.3.2 Derivation of Rayleigh-Jeans Law . . . . . . . . . . . . 1818.3.3 The ultraviolet catastrophe . . . . . . . . . . . . . . . 1888.3.4 Quantum resolution: . . . . . . . . . . . . . . . . . . . 1898.3.5 The Early Universe: the ultimate blackbody . . . . . . 1918.4 Particles as waves . . . . . . . . . . . . . . . . . . . . . . . . . 1968.4.1 Electron waves . . . . . . . . . . . . . . . . . . . . . . 1968.4.2 de Broglie Wavelength . . . . . . . . . . . . . . . . . . 1978.4.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1998.5 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . 2029 The Wave Function 2049.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 2049.2 Quantum vs Newtonian description of physical states . . . . . 2049.2.1 Newtonian description of the state of a particle . . . . 2059.2.2 Quantum description of the state of a particle . . . . . 2059.3 Physical Consequences and Interpretation . . . . . . . . . . . 2079.4 Measurements of position . . . . . . . . . . . . . . . . . . . . 2089.5 Example: Gaussian wavefunction . . . . . . . . . . . . . . . . 2099.6 Spooky" Action at a Distance: Non-Locality in QuantumMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.6.1 The EPR Paradox" . . . . . . . . . . . . . . . . . . . 2119.6.2 Bell's Theorem and the Experimental Repudiation ofEPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21410 The Schrodinger Equation 21710.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 21710.2 Momentum in Quantum Mechanics . . . . . . . . . . . . . . . 21810.2.1 Pure Waves . . . . . . . . . . . . . . . . . . . . . . . . 21810.2.2 The Momentum Operator . . . . . . . . . . . . . . . . 22010.3 Energy in Quantum Mechanics . . . . . . . . . . . . . . . . . 22310.4 The Time Independent Schrodinger Equation . . . . . . . . . 22410.4.1 Stationary States . . . . . . . . . . . . . . . . . . . . . 22410.4.2 The Quantum" in Quantum Mechanics . . . . . . . . 22610.5 Examples of Stationary States . . . . . . . . . . . . . . . . . . 22610.5.1 Free particle in one dimension . . . . . . . . . . . . . . 22610.5.2 Example 2: Particle in a Box with Impenetrable Walls 22710.5.3 Example 3 : Simple Harmonic Oscillator . . . . . . . . 22910.6 Absorption and emission . . . . . . . . . . . . . . . . . . . . . 23110.7 Tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23310.7.1 Tunnelling through a potential barrier of nite width . 23310.7.2 Particle in a Box with Penetrable Walls . . . . . . . . . 23510.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 23710.7.4 Applications of tunnelling . . . . . . . . . . . . . . . . 23810.8 The Quantum Correspondence Principle . . . . . . . . . . . . 24210.8.1 Recovering the everyday world . . . . . . . . . . . . . . 24210.8.2 The Bohr Correspondence Principle . . . . . . . . . . . 24310.9 The Time Dependent Schrodinger equation . . . . . . . . . . . 24410.9.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 24611 The Hydrogen Atom 24911.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 24911.2 Newtonian (Classical) Dynamics . . . . . . . . . . . . . . . . . 24911.3 The Bohr Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 25111.4 Semi-classical spectrum from the Bohr correspondence principle25411.5 Emission and Absorption Spectra . . . . . . . . . . . . . . . . 25411.6 Three Dimensional Hydrogen Atom . . . . . . . . . . . . . . . 25611.6.1 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 25611.6.2 Solutions and Quantum Numbers . . . . . . . . . . . . 25811.6.3 Fermions and the spin quantum number . . . . . . . . 26211.7 Periodic Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 26511.7.1 Hydrogen-like atoms . . . . . . . . . . . . . . . . . . . 26511.7.2 Chemical Properties and the Periodic Table . . . . . . 26612 Nuclear Physics 27012.1 Properties of the Nucleus . . . . . . . . . . . . . . . . . . . . . 27012.1.1 Mass of Nucleons . . . . . . . . . . . . . . . . . . . . . 27012.1.2 Structure of Nucleus . . . . . . . . . . . . . . . . . . . 27112.1.3 The Nuclear Force . . . . . . . . . . . . . . . . . . . . 27112.2 Binding Energy and Stability . . . . . . . . . . . . . . . . . . 27412.2.1 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . 27412.2.2 Binding Energy . . . . . . . . . . . . . . . . . . . . . . 27512.2.3 Binding Energy per Nucleon . . . . . . . . . . . . . . . 27512.3 Formation of Elements: A Brief History of the Universe . . . . 27612.4 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27912.4.1 Unstable Isotopes . . . . . . . . . . . . . . . . . . . . . 27912.4.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 28112.4.3 Beta decay . . . . . . . . . . . . . . . . . . . . . . . . . 28212.4.4 Alpha Decay . . . . . . . . . . . . . . . . . . . . . . . 28312.4.5 Decay Rates . . . . . . . . . . . . . . . . . . . . . . . . 28312.4.6 Carbon Dating . . . . . . . . . . . . . . . . . . . . . . 28513 Supplementary: Advanced Topics 28713.1 Quantum Information and Quantum Computation . . . . . . . 28713.2 Relativity and quantum mechanics . . . . . . . . . . . . . . . 28714 Conclusions 28815 Appendix: Mathematical Background 28915.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 28915.2 Probabilities and expectation values . . . . . . . . . . . . . . . 29115.2.1 Discrete Distributions . . . . . . . . . . . . . . . . . . 29115.2.2 Continuous probability distributions . . . . . . . . . . 29215.2.3 Dirac Delta Function . . . . . . . . . . . . . . . . . . . 29615.3 Supplementary: Fourier Series and Transforms . . . . . . . . . 29815.3.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . 29815.3.2 Fourier Transforms . . . . . . . . . . . . . . . . . . . . 30015.3.3 The mathematical uncertainty principle . . . . . . . . . 30215.3.4 Dirac Delta Function Revisited . . . . . . . . . . . . . 30315.3.5 Parseval's Theorem . . . . . . . . . . . . . . . . . . . . 30315.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30415.4.1 Moving pure waves . . . . . . . . . . . . . . . . . . . . 30415.4.2 Complex Waves . . . . . . . . . . . . . . . . . . . . . . 30515.4.3 Group velocity and phase velocity . . . . . . . . . . . 30515.4.4 Wave packets . . . . . . . . . . . . . . . . . . . . . . . 30715.4.5 Wave number and momentum . . . . . . . . . . . . . . 30915.5 Derivation of Hydrogen Wave Functions . . . . . . . . . . . . 312
1 Introduction 91.1 The goal of physics . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The connection between physics and mathematics . . . . . . . 101.3 Paradigm shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Correspondence Principle . . . . . . . . . . . . . . . . . . 162 Symmetry and Physics 172.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 172.2 What is Symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Role of Symmetry in Physics . . . . . . . . . . . . . . . . . . . 182.3.1 Symmetry as a guiding principle . . . . . . . . . . . . . 182.3.2 Symmetry and Conserved Quantities: Noether's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3 Symmetry as a tool for simplifying problems . . . . . . 192.4 Symmetries were made to be broken . . . . . . . . . . . . . . 202.4.1 Spacetime symmetries . . . . . . . . . . . . . . . . . . 202.4.2 Parity violation . . . . . . . . . . . . . . . . . . . . . . 212.4.3 Spontaneously broken symmetries . . . . . . . . . . . . 242.4.4 Variational calculations: Lifeguards and light rays . . . 273 Formal Aspects of Symmetry 303.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Symmetries and Operations . . . . . . . . . . . . . . . . . . . 303.2.1 Denition of a symmetry operation . . . . . . . . . . . 303.2.2 Rules obeyed by symmetry operations . . . . . . . . . 323.2.3 Multiplication tables . . . . . . . . . . . . . . . . . . . 353.2.4 Symmetry and group theory . . . . . . . . . . . . . . . 363.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 The identity operation . . . . . . . . . . . . . . . . . . 373.3.2 Permutations of two identical objects . . . . . . . . . . 373.3.3 Permutations of three identical objects . . . . . . . . . 383.3.4 Rotations of regular polygons . . . . . . . . . . . . . . 393.4 Continuous vs discrete symmetries . . . . . . . . . . . . . . . 403.5 Symmetries and Conserved Quantities:Noether's Theorem . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Supplementary: Variational Mechanics and the Proof of Noether'sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6.1 Variational Mechanics: Principle of Least Action . . . . 423.6.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . 473.6.3 Proof of Noether's Theorem . . . . . . . . . . . . . . . 484 Symmetries and Linear Transformations 524.1 Learning outcomes . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Review of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 534.2.1 Coordinate free denitions . . . . . . . . . . . . . . . . 534.2.2 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 584.2.3 Vector operations in component form . . . . . . . . . . 594.2.4 Position vector . . . . . . . . . . . . . . . . . . . . . . 604.2.5 Dierentiation of vectors: velocity and acceleration . . 624.3 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 634.3.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.2 Translations . . . . . . . . . . . . . . . . . . . . . . . . 644.3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 674.4 Linear Transformations and matrices . . . . . . . . . . . . . . 684.4.1 Linear transformations as matrices . . . . . . . . . . . 684.4.2 Identity Transformation and Inverses . . . . . . . . . . 704.4.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.4 Reections . . . . . . . . . . . . . . . . . . . . . . . . . 724.4.5 Matrix Representation of Permutations of Three Objects 734.5 Pythagoras and Geometry . . . . . . . . . . . . . . . . . . . . 745 Special Relativity I: The Basics 775.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 775.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 775.2.1 Frames5.2.2 Spacetime Diagrams . . . . . . . . . . . . . . . . . . . 785.2.3 Newtonian Relativity and Galilean Transformations . . 835.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.3.1 The Fundamental Postulate . . . . . . . . . . . . . . . 855.3.2 The problem with Galilean Relativity . . . . . . . . . . 855.3.3 Michelson-Morley Experiment . . . . . . . . . . . . . . 875.3.4 Maxwell's Equations . . . . . . . . . . . . . . . . . . . 905.4 Summary of Consequences . . . . . . . . . . . . . . . . . . . . 915.5 Relativity of Simultaneity . . . . . . . . . . . . . . . . . . . . 925.6 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.6.1 Derivation: . . . . . . . . . . . . . . . . . . . . . . . . 975.6.2 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . 995.6.3 Experimental Conrmation . . . . . . . . . . . . . . . 1015.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 1025.7 Lorentz Contraction . . . . . . . . . . . . . . . . . . . . . . . 1045.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1045.7.3 Proper Length and Proper Distance. . . . . . . . . . . 1045.7.4 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Special Relativity II: In Depth 1106.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1106.2 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 1106.2.1 Derivation of general form . . . . . . . . . . . . . . . . 1106.2.2 Properties of Lorentz Transformations . . . . . . . . . 1136.2.3 Lorentzian Geometry . . . . . . . . . . . . . . . . . . . 1166.3 The Light Cone . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4 Proper time revisited . . . . . . . . . . . . . . . . . . . . . . . 1206.5 Relativistic Addition of Velocities . . . . . . . . . . . . . . . . 1226.6 Relativistic Doppler Shift . . . . . . . . . . . . . . . . . . . . . 1246.6.1 Non-relativistic Doppler Shift Review . . . . . . . . . . 1246.6.2 Relativistic Doppler Shift . . . . . . . . . . . . . . . . 1246.7 Relativistic Energy and Momentum . . . . . . . . . . . . . . . 1276.7.1 Relativistic Energy Momentum Conservation . . . . . . 1276.7.2 Relativistic Inertia . . . . . . . . . . . . . . . . . . . . 1286.7.3 Relativistic Energy . . . . . . . . . . . . . . . . . . . . 1296.7.4 Relativistic Three-Momentum . . . . . . . . . . . . . . 1296.7.5 Relationship Between Relativistic Energy and Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306.7.6 Kinetic energy: . . . . . . . . . . . . . . . . . . . . . . 1306.7.7 Massless particles . . . . . . . . . . . . . . . . . . . . 1316.8 Space-time Vectors . . . . . . . . . . . . . . . . . . . . . . . . 1336.8.1 Position Four-Vector: . . . . . . . . . . . . . . . . . . . 1346.8.2 Four-momentum: . . . . . . . . . . . . . . . . . . . . . 1356.8.3 Null four-vectors . . . . . . . . . . . . . . . . . . . . . 1376.8.4 Relativistic Scattering . . . . . . . . . . . . . . . . . . 1376.8.5 More Examples . . . . . . . . . . . . . . . . . . . . . . 1386.9 Relativistic Units . . . . . . . . . . . . . . . . . . . . . . . . . 1396.10 Symmetry Redux . . . . . . . . . . . . . . . . . . . . . . . . . 1406.10.1 Matrix form of Lorentz Transformations . . . . . . . . 1406.10.2 Lorentz Transformations as a Symmetry Group . . . . 1426.11 Supplementary: Four vectors and tensors in covariant form . . 1437 General Relativity 1497.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1497.2 Problems with Newtonian Gravity . . . . . . . . . . . . . . . . 1497.2.1 Review of Newtonian Gravity . . . . . . . . . . . . . . 1497.2.2 Perihelion Shift of Mercury . . . . . . . . . . . . . . . 1517.2.3 Action at a Distance . . . . . . . . . . . . . . . . . . . 1527.2.4 The Puzzle of Inertial vs Gravitational Mass . . . . . . 1537.3 Einstein's Thinking: the Strong Principle of Equivalence . . . 1537.4 Geometry of Spacetime . . . . . . . . . . . . . . . . . . . . . . 1557.5 Some Consequences of General Relativity: . . . . . . . . . . . 1587.6 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 1597.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1597.6.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 1607.6.3 Recent Observations . . . . . . . . . . . . . . . . . . . 1617.7 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.2 Properties: . . . . . . . . . . . . . . . . . . . . . . . . . 1637.7.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1647.7.4 Further Information . . . . . . . . . . . . . . . . . . . 1667.8 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 Introduction to the Quantum 1708.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 1708.2 Light as particles . . . . . . . . . . . . . . . . . . . . . . . . . 1718.2.1 Review: Light as Waves . . . . . . . . . . . . . . . . . 1718.2.2 Photoelectric Eect . . . . . . . . . . . . . . . . . . . . 1718.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 1758.3 Blackbody Radiation and the Ultraviolet Catastrophe . . . . . 1798.3.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . 1798.3.2 Derivation of Rayleigh-Jeans Law . . . . . . . . . . . . 1818.3.3 The ultraviolet catastrophe . . . . . . . . . . . . . . . 1888.3.4 Quantum resolution: . . . . . . . . . . . . . . . . . . . 1898.3.5 The Early Universe: the ultimate blackbody . . . . . . 1918.4 Particles as waves . . . . . . . . . . . . . . . . . . . . . . . . . 1968.4.1 Electron waves . . . . . . . . . . . . . . . . . . . . . . 1968.4.2 de Broglie Wavelength . . . . . . . . . . . . . . . . . . 1978.4.3 Observational Evidence . . . . . . . . . . . . . . . . . . 1998.5 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . 2029 The Wave Function 2049.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 2049.2 Quantum vs Newtonian description of physical states . . . . . 2049.2.1 Newtonian description of the state of a particle . . . . 2059.2.2 Quantum description of the state of a particle . . . . . 2059.3 Physical Consequences and Interpretation . . . . . . . . . . . 2079.4 Measurements of position . . . . . . . . . . . . . . . . . . . . 2089.5 Example: Gaussian wavefunction . . . . . . . . . . . . . . . . 2099.6 Spooky" Action at a Distance: Non-Locality in QuantumMechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.6.1 The EPR Paradox" . . . . . . . . . . . . . . . . . . . 2119.6.2 Bell's Theorem and the Experimental Repudiation ofEPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21410 The Schrodinger Equation 21710.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 21710.2 Momentum in Quantum Mechanics . . . . . . . . . . . . . . . 21810.2.1 Pure Waves . . . . . . . . . . . . . . . . . . . . . . . . 21810.2.2 The Momentum Operator . . . . . . . . . . . . . . . . 22010.3 Energy in Quantum Mechanics . . . . . . . . . . . . . . . . . 22310.4 The Time Independent Schrodinger Equation . . . . . . . . . 22410.4.1 Stationary States . . . . . . . . . . . . . . . . . . . . . 22410.4.2 The Quantum" in Quantum Mechanics . . . . . . . . 22610.5 Examples of Stationary States . . . . . . . . . . . . . . . . . . 22610.5.1 Free particle in one dimension . . . . . . . . . . . . . . 22610.5.2 Example 2: Particle in a Box with Impenetrable Walls 22710.5.3 Example 3 : Simple Harmonic Oscillator . . . . . . . . 22910.6 Absorption and emission . . . . . . . . . . . . . . . . . . . . . 23110.7 Tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23310.7.1 Tunnelling through a potential barrier of nite width . 23310.7.2 Particle in a Box with Penetrable Walls . . . . . . . . . 23510.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 23710.7.4 Applications of tunnelling . . . . . . . . . . . . . . . . 23810.8 The Quantum Correspondence Principle . . . . . . . . . . . . 24210.8.1 Recovering the everyday world . . . . . . . . . . . . . . 24210.8.2 The Bohr Correspondence Principle . . . . . . . . . . . 24310.9 The Time Dependent Schrodinger equation . . . . . . . . . . . 24410.9.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 24611 The Hydrogen Atom 24911.1 Learning Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 24911.2 Newtonian (Classical) Dynamics . . . . . . . . . . . . . . . . . 24911.3 The Bohr Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 25111.4 Semi-classical spectrum from the Bohr correspondence principle25411.5 Emission and Absorption Spectra . . . . . . . . . . . . . . . . 25411.6 Three Dimensional Hydrogen Atom . . . . . . . . . . . . . . . 25611.6.1 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 25611.6.2 Solutions and Quantum Numbers . . . . . . . . . . . . 25811.6.3 Fermions and the spin quantum number . . . . . . . . 26211.7 Periodic Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 26511.7.1 Hydrogen-like atoms . . . . . . . . . . . . . . . . . . . 26511.7.2 Chemical Properties and the Periodic Table . . . . . . 26612 Nuclear Physics 27012.1 Properties of the Nucleus . . . . . . . . . . . . . . . . . . . . . 27012.1.1 Mass of Nucleons . . . . . . . . . . . . . . . . . . . . . 27012.1.2 Structure of Nucleus . . . . . . . . . . . . . . . . . . . 27112.1.3 The Nuclear Force . . . . . . . . . . . . . . . . . . . . 27112.2 Binding Energy and Stability . . . . . . . . . . . . . . . . . . 27412.2.1 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . 27412.2.2 Binding Energy . . . . . . . . . . . . . . . . . . . . . . 27512.2.3 Binding Energy per Nucleon . . . . . . . . . . . . . . . 27512.3 Formation of Elements: A Brief History of the Universe . . . . 27612.4 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27912.4.1 Unstable Isotopes . . . . . . . . . . . . . . . . . . . . . 27912.4.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 28112.4.3 Beta decay . . . . . . . . . . . . . . . . . . . . . . . . . 28212.4.4 Alpha Decay . . . . . . . . . . . . . . . . . . . . . . . 28312.4.5 Decay Rates . . . . . . . . . . . . . . . . . . . . . . . . 28312.4.6 Carbon Dating . . . . . . . . . . . . . . . . . . . . . . 28513 Supplementary: Advanced Topics 28713.1 Quantum Information and Quantum Computation . . . . . . . 28713.2 Relativity and quantum mechanics . . . . . . . . . . . . . . . 28714 Conclusions 28815 Appendix: Mathematical Background 28915.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 28915.2 Probabilities and expectation values . . . . . . . . . . . . . . . 29115.2.1 Discrete Distributions . . . . . . . . . . . . . . . . . . 29115.2.2 Continuous probability distributions . . . . . . . . . . 29215.2.3 Dirac Delta Function . . . . . . . . . . . . . . . . . . . 29615.3 Supplementary: Fourier Series and Transforms . . . . . . . . . 29815.3.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . 29815.3.2 Fourier Transforms . . . . . . . . . . . . . . . . . . . . 30015.3.3 The mathematical uncertainty principle . . . . . . . . . 30215.3.4 Dirac Delta Function Revisited . . . . . . . . . . . . . 30315.3.5 Parseval's Theorem . . . . . . . . . . . . . . . . . . . . 30315.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30415.4.1 Moving pure waves . . . . . . . . . . . . . . . . . . . . 30415.4.2 Complex Waves . . . . . . . . . . . . . . . . . . . . . . 30515.4.3 Group velocity and phase velocity . . . . . . . . . . . 30515.4.4 Wave packets . . . . . . . . . . . . . . . . . . . . . . . 30715.4.5 Wave number and momentum . . . . . . . . . . . . . . 30915.5 Derivation of Hydrogen Wave Functions . . . . . . . . . . . . 312