This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains…mehr
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
Preface.- Dedication.- Acknowledgement.- Introduction.- Implementation Strategies.- Two-Dimensional Classical Examples.- Three-Dimensional Turbulence and Numerical Examples.- Appendix A: Example Codes and Subroutines.- Bibliography.
1 Introduction.- 1.1 Historical Background and Literature Review.- 1.2 Governing Equations of Incompressible Turbulent Flows.- 1.3 Summary.- References.- 2 Theoretical Principles and Galilean Invariance.- 2.1 Introduction.- 2.2 Basic Principles of Advanced Turbulence Modelling.- 2.3 Summary.- References.- 3 The k-w Shear-Stress Transport (SST) Turbulence Model.- 3.1 Introduction.- 3.2 Mathematical Derivations.- 3.3 Governing Equations of the k-w SST Turbulence Model.- 3.4 Summary.- References.- 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations.- 4.1 Introduction.- 4.2 Similarity Theory of Turbulent Oscillatory Motions.- 4.3 Summary.- References.- 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor.- 5.1 Introduction.- 5.2 The Anisotropic Reynolds Stress Tensor.- 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows.- 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model.- 5.5 On the Implementationof the Anisotropic Hybrid k-w SST/STM Turbulence Model.- 5.6 Summary.- References.- Appendices: Additional Mathematical Derivations.- A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System.- A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation.- A.3 The Deviatoric Part of the Similarity Tensor.
Preface.- Dedication.- Acknowledgement.- Introduction.- Implementation Strategies.- Two-Dimensional Classical Examples.- Three-Dimensional Turbulence and Numerical Examples.- Appendix A: Example Codes and Subroutines.- Bibliography.
1 Introduction.- 1.1 Historical Background and Literature Review.- 1.2 Governing Equations of Incompressible Turbulent Flows.- 1.3 Summary.- References.- 2 Theoretical Principles and Galilean Invariance.- 2.1 Introduction.- 2.2 Basic Principles of Advanced Turbulence Modelling.- 2.3 Summary.- References.- 3 The k-w Shear-Stress Transport (SST) Turbulence Model.- 3.1 Introduction.- 3.2 Mathematical Derivations.- 3.3 Governing Equations of the k-w SST Turbulence Model.- 3.4 Summary.- References.- 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations.- 4.1 Introduction.- 4.2 Similarity Theory of Turbulent Oscillatory Motions.- 4.3 Summary.- References.- 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor.- 5.1 Introduction.- 5.2 The Anisotropic Reynolds Stress Tensor.- 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows.- 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model.- 5.5 On the Implementationof the Anisotropic Hybrid k-w SST/STM Turbulence Model.- 5.6 Summary.- References.- Appendices: Additional Mathematical Derivations.- A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System.- A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation.- A.3 The Deviatoric Part of the Similarity Tensor.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497