44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
22 °P sammeln
  • Broschiertes Buch

This clear, concise and highly readable text, Para-contact metric manifold, deals with the study of various type of metric and non-metric connection in context of Para-contact manifolds. A brief introduction related to the definition of Differentiable manifold, vector field and tangent space, Lie-Bract, Lie-derivatives, covariant derivatives, Exterior derivatives, connection, Riemannian manifold, curvature tensor, Almost contact metric manifold, submanifolds and hypersurface has been given in this book. Certain curvature tensors like, Quasi-conformal curvature tensor, Pseudo projective…mehr

Produktbeschreibung
This clear, concise and highly readable text, Para-contact metric manifold, deals with the study of various type of metric and non-metric connection in context of Para-contact manifolds. A brief introduction related to the definition of Differentiable manifold, vector field and tangent space, Lie-Bract, Lie-derivatives, covariant derivatives, Exterior derivatives, connection, Riemannian manifold, curvature tensor, Almost contact metric manifold, submanifolds and hypersurface has been given in this book. Certain curvature tensors like, Quasi-conformal curvature tensor, Pseudo projective curvature tensor, G-projective curvature tensor etc are explained with P-Sasakian manifold. The characteristics properties of the different type of almost Para-contact metric manifold, Almost Para-contact submanifolds and Hypersurfaces of almost product manifold are briefly discussed in this book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Rajesh Kumar ist außerordentlicher Professor an der Chitkara University, Punjab. Sein Interessengebiet umfasst Werbung, Branding und Dienstleistungsmarketing. Er hat 5 Jahre Lehrerfahrung. Er hat in verschiedenen referierten nationalen und internationalen Fachzeitschriften veröffentlicht.