Stephen Lynch
A Simple Introduction to Python
Stephen Lynch
A Simple Introduction to Python
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is aimed at pre-university students and complete novices to programming. After introducing Python as a powerful calculator, simple programming constructs are covered and the NumPy, MatPlotLib and SymPy modules (libraries) are introduced.
Andere Kunden interessierten sich auch für
- Dimitrios MitsotakisComputational Mathematics97,99 €
- Stephen LynchPython for Scientific Computing and Artificial Intelligence74,99 €
- Taimoor SalahuddinNumerical Techniques in MATLAB84,99 €
- Jeffery J. LeaderNumerical Analysis and Scientific Computation85,99 €
- Vladislav BukshtynovComputational Optimization116,99 €
- Marco Scutari (Istituto Dalle Molle)The Pragmatic Programmer for Machine Learning100,99 €
- Abdelwahab Kharab (Department of Mathematics, Abu Dhabi University,An Introduction to Numerical Methods172,99 €
-
-
-
This book is aimed at pre-university students and complete novices to programming. After introducing Python as a powerful calculator, simple programming constructs are covered and the NumPy, MatPlotLib and SymPy modules (libraries) are introduced.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC The Python Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 114
- Erscheinungstermin: 11. Juni 2024
- Englisch
- Abmessung: 234mm x 156mm x 6mm
- Gewicht: 208g
- ISBN-13: 9781032750293
- ISBN-10: 1032750294
- Artikelnr.: 70005917
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Chapman & Hall/CRC The Python Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 114
- Erscheinungstermin: 11. Juni 2024
- Englisch
- Abmessung: 234mm x 156mm x 6mm
- Gewicht: 208g
- ISBN-13: 9781032750293
- ISBN-10: 1032750294
- Artikelnr.: 70005917
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
In 2022, Stephen Lynch was named a National Teaching Fellow, which celebrates and recognizes individuals who have made an outstanding impact on student outcomes and teaching in higher education. He won the award for his work in programming in STEM subjects, research feeding into teaching, and widening participation (using experiential and object-based learning). Although educated as a pure mathematician, Stephen's many interests now include applied mathematics, cell biology, electrical engineering, computing, neural networks, nonlinear optics and binary oscillator computing, which he co-invented with a colleague. He has authored 2 international patents for inventions, 8 books, 4 book chapters, over 45 journal articles, and a few conference proceedings. Stephen is a Fellow of the Institute of Mathematics and Its Applications (FIMA) and a Senior Fellow of the Higher Education Academy (SFHEA). He is currently a Reader with MMU and was an Associate Lecturer with the Open University from 2008 to 2012. In 2010, Stephen volunteered as a STEM Ambassador, in 2012, he was awarded MMU Public Engagement Champion status, and in 2014, he became a Speaker for Schools. He runs national workshops on "Python for A-Level Mathematics and Beyond," and international workshops on "Python for Scientific Computing and TensorFlow for Artificial Intelligence." He has run workshops in China, Malaysia, Singapore, Saudi Arabia and the USA.
1. Python as a Powerful Calculator. 1.1. BODMAS. 1.2. Fractions: Symbolic
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
1. Python as a Powerful Calculator. 1.1. BODMAS. 1.2. Fractions: Symbolic
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.
Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library
(Module) Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples,
Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and
While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle
Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A
Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib.
4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4.
Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2.
Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python
for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions
(Mathematics). 6.4. Differentiation and Integration (Calculus). 7.
Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher.
7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA
Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1.
Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The
Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to
Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess
the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin
Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes
and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.