In less than two decades the concept of supercon In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech superconductivity, such an individual…mehr
In less than two decades the concept of supercon In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech superconductivity, such an individual is Ted Collings. nology soon focused on niobium-titanium alloys. They His background as a metallurgist has perhaps given him are ductile and thus fabricable into practical super a distinct advantage in understanding superconduc conducting wires that have the critical currents and tivity in titanium alloys because the optimization of fields necessary for large-scale devices. More than superconducting parameters in these alloys has been 90% of all present-day applications of superconductors almost exclusively metallurgical. Advantages in use titanium alloys. The drive to optimize these training and innate abilities notwithstanding, it is alloys resulted in a flood of research that has been the author's dedication that is the essential com collected, condensed, and analyzed in this volume.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Titanium Alloy Superconductors A Tabulated Review.- TABLE 1-1 Unalloyed Titanium Alpha-Phase (hep) Titanium.- TABLE 1-2 Unalloyed Titanium Beta-Phase (bcc) Titanium.- TABLE 1-3 Unalloyed Titanium Omega-Phase, Thin Films and Amorphous.- TABLE 1-4 Titanium-Vanadium Alloys The Superconducting Transition.- TABLE 1-5 Titanium-Vanadium Alloys The Mixed State.- TABLE 1-6 Titanium-Vanadium Alloys Current Transport Effects.- TABLE 1-7 Titanium-Chromium Alloys The Superconducting Transition.- TABLE 1-8 Titanium-Chromium Alloys Current Transport and Magnetic Effects.- TABLE 1-9 Titanium-Manganese Alloys The Superconducting Transition.- TABLE 1-10 Titanium-Manganese Alloys Current Transport and Magnetic Effects.- TABLE 1-11 Titanium-Iron Alloys - The Superconducting Transition.- TABLE 1-12 Titanium-Iron Alloys - Current Transport and Magnetic Effects.- TABLE 1-13 Titanium-Cobalt Alloys.- TABLE 1-14 Titanium-Nickel Alloys.- TABLE 1-15 Titanium-Zirconium and Titanium-Hafnium Alloys.- TABLE 1-16 Titanium-Tantalum Alloys The Superconducting Transition.- TABLE 1-17 Titanium-Tantalum Alloys The Mixed State.- TABLE 1-18 Titanium-Tantalum Alloys The Critical Current Density.- TABLE 1-19 Titanium-Molybdenum Alloys The Superconducting Transition.- TABLE 1-20 Titanium-Molybdenum Alloys The Mixed State.- TABLE 1-21 Titanium-Molybdenum Alloys Current Transport Effects.- TABLE 1-22 Titanium-Tungsten Alloys.- TABLE 1-23 Titanium-Technetium and Titanium-Rhenium Alloys.- TABLE 1-24 Titanium-Ruthenium and Titanium-Osmium Alloys.- TABLE 1-25 Titanium-Rhodium, -Iridium, -Palladium and -Platinum Alloys.- TABLE 1-26 Titanium-Base Ternary Alloys (Excluding Alloys with Niobium).- TABLE 1-27 Titanium-Niobium Alloys The Superconducting Transition.- TABLE 1-28 Titanium-Niobium Alloys Critical Fields and the Mixed State.- TABLE 1-29 Titanium-Niobium Alloys - Critical Current Density, Flux Pinning.- TABLE 1-30 Titanium-Niobium-Boron, -Carbon, -Nitrogen, and -Oxygen Alloys.- TABLE 1-31 Titanium-Niobium-Simple-Metal Alloys.- TABLE 1-32 The Soviet Alloys.- TABLE 1-33 Titanium-Zirconium-Niobium Alloys (a) Research Alloys.- (b) A Commercial Wire Development Program.- (c) Properties of Rolled Strip.- (d) AC Effects in X-Type and Z-Type Alloys.- (e) The Patent Literature.- TABLE 1-34 Titanium-Hafnium-Niobium Alloys.- TABLE 1-35 Titanium-Niobium-Vanadium Alloys.- TABLE 1-36 Titanium-Niobium-Tantalum Alloys.- TABLE 1-37 Titanium-Niobium-(Groups VI, VII, and VIII) Transition-Metal-Ternary Alloys.- TABLE 1-38 Titanium-Niobium-Base Quaternary Alloys.- TABLE 1-39 Amorphous Titanium Alloys.- 2. Unalloyed Titanium.- 2.1 Sample Purity and Measuring Technique.- 2.1.1 Influence of Trace Impurities.- 2.1.2 Refrigeration and Sample Temperature.- 2.1.3 Spurious Mechanical Effects.- 2.2 Transition Temperature The Influences of Pressure and Allotropic Transformation.- 2.2.1 The Influence of Pressure.- 2.2.2 The Influence of Structure Amorphous Titanium.- 2.2.3 The Influence of Structure Omega-Phase.- 2.2.4 The Influence of Structure The BCC-Phase.- 2.2.5 The Influence of Structure Thin Films.- 2.3 The Isotope Effect.- 2.4 Superconducting Transition Temperature of Unalloyed T.- 2.5 Thermodynamic Critical Field of Unalloyed T.- 3. Titanium-Vanadium Binary Alloys.- 1: The Superconducting Transition In Titanium-Vanadium Alloys.- 3.1 Systematics of the Transition Temperature.- 3.2 Microscopic Mechanisms of Superconductivity.- 3.2.1 The Electron-Phonon Interaction.- 3.2.2 The Magnetic Interaction.- 3.3 Transition Temperature and Microstructure.- 3.3.1 Properties of Annealed and Quenched Microstructures.- 3.3.2 Influences of Aging and Other Heat Treatments.- 3.4 Sputtered Films.- 2: THE MIXED STATE IN TITANIUM-VANADIUM ALLOYS.- 3.5 The Lower Critical Field, Hc1.- 3.6 The Upper Critical Field, Hc2.- 3.6.1 Temperature Dependences Early Studies.- 3.6.2 Composition Dependences Early Studies.- 3.6.3 Temperature Dependences Paramagnetic Limitation.- 3.6.4 Experimental Evaluation of the MAKI-WHH The
1. Titanium Alloy Superconductors A Tabulated Review.- TABLE 1-1 Unalloyed Titanium Alpha-Phase (hep) Titanium.- TABLE 1-2 Unalloyed Titanium Beta-Phase (bcc) Titanium.- TABLE 1-3 Unalloyed Titanium Omega-Phase, Thin Films and Amorphous.- TABLE 1-4 Titanium-Vanadium Alloys The Superconducting Transition.- TABLE 1-5 Titanium-Vanadium Alloys The Mixed State.- TABLE 1-6 Titanium-Vanadium Alloys Current Transport Effects.- TABLE 1-7 Titanium-Chromium Alloys The Superconducting Transition.- TABLE 1-8 Titanium-Chromium Alloys Current Transport and Magnetic Effects.- TABLE 1-9 Titanium-Manganese Alloys The Superconducting Transition.- TABLE 1-10 Titanium-Manganese Alloys Current Transport and Magnetic Effects.- TABLE 1-11 Titanium-Iron Alloys - The Superconducting Transition.- TABLE 1-12 Titanium-Iron Alloys - Current Transport and Magnetic Effects.- TABLE 1-13 Titanium-Cobalt Alloys.- TABLE 1-14 Titanium-Nickel Alloys.- TABLE 1-15 Titanium-Zirconium and Titanium-Hafnium Alloys.- TABLE 1-16 Titanium-Tantalum Alloys The Superconducting Transition.- TABLE 1-17 Titanium-Tantalum Alloys The Mixed State.- TABLE 1-18 Titanium-Tantalum Alloys The Critical Current Density.- TABLE 1-19 Titanium-Molybdenum Alloys The Superconducting Transition.- TABLE 1-20 Titanium-Molybdenum Alloys The Mixed State.- TABLE 1-21 Titanium-Molybdenum Alloys Current Transport Effects.- TABLE 1-22 Titanium-Tungsten Alloys.- TABLE 1-23 Titanium-Technetium and Titanium-Rhenium Alloys.- TABLE 1-24 Titanium-Ruthenium and Titanium-Osmium Alloys.- TABLE 1-25 Titanium-Rhodium, -Iridium, -Palladium and -Platinum Alloys.- TABLE 1-26 Titanium-Base Ternary Alloys (Excluding Alloys with Niobium).- TABLE 1-27 Titanium-Niobium Alloys The Superconducting Transition.- TABLE 1-28 Titanium-Niobium Alloys Critical Fields and the Mixed State.- TABLE 1-29 Titanium-Niobium Alloys - Critical Current Density, Flux Pinning.- TABLE 1-30 Titanium-Niobium-Boron, -Carbon, -Nitrogen, and -Oxygen Alloys.- TABLE 1-31 Titanium-Niobium-Simple-Metal Alloys.- TABLE 1-32 The Soviet Alloys.- TABLE 1-33 Titanium-Zirconium-Niobium Alloys (a) Research Alloys.- (b) A Commercial Wire Development Program.- (c) Properties of Rolled Strip.- (d) AC Effects in X-Type and Z-Type Alloys.- (e) The Patent Literature.- TABLE 1-34 Titanium-Hafnium-Niobium Alloys.- TABLE 1-35 Titanium-Niobium-Vanadium Alloys.- TABLE 1-36 Titanium-Niobium-Tantalum Alloys.- TABLE 1-37 Titanium-Niobium-(Groups VI, VII, and VIII) Transition-Metal-Ternary Alloys.- TABLE 1-38 Titanium-Niobium-Base Quaternary Alloys.- TABLE 1-39 Amorphous Titanium Alloys.- 2. Unalloyed Titanium.- 2.1 Sample Purity and Measuring Technique.- 2.1.1 Influence of Trace Impurities.- 2.1.2 Refrigeration and Sample Temperature.- 2.1.3 Spurious Mechanical Effects.- 2.2 Transition Temperature The Influences of Pressure and Allotropic Transformation.- 2.2.1 The Influence of Pressure.- 2.2.2 The Influence of Structure Amorphous Titanium.- 2.2.3 The Influence of Structure Omega-Phase.- 2.2.4 The Influence of Structure The BCC-Phase.- 2.2.5 The Influence of Structure Thin Films.- 2.3 The Isotope Effect.- 2.4 Superconducting Transition Temperature of Unalloyed T.- 2.5 Thermodynamic Critical Field of Unalloyed T.- 3. Titanium-Vanadium Binary Alloys.- 1: The Superconducting Transition In Titanium-Vanadium Alloys.- 3.1 Systematics of the Transition Temperature.- 3.2 Microscopic Mechanisms of Superconductivity.- 3.2.1 The Electron-Phonon Interaction.- 3.2.2 The Magnetic Interaction.- 3.3 Transition Temperature and Microstructure.- 3.3.1 Properties of Annealed and Quenched Microstructures.- 3.3.2 Influences of Aging and Other Heat Treatments.- 3.4 Sputtered Films.- 2: THE MIXED STATE IN TITANIUM-VANADIUM ALLOYS.- 3.5 The Lower Critical Field, Hc1.- 3.6 The Upper Critical Field, Hc2.- 3.6.1 Temperature Dependences Early Studies.- 3.6.2 Composition Dependences Early Studies.- 3.6.3 Temperature Dependences Paramagnetic Limitation.- 3.6.4 Experimental Evaluation of the MAKI-WHH The
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497