26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
13 °P sammeln
  • Broschiertes Buch

Discrete Fourier Transform (DFT) and Finite Impulse Response (FIR) filters are extensively used in Digital Signal Processing (DSP) and Image Processing. In this book, an arithmetic Sum-of-Product (SOP) based approach to implement area- and delay-efficient DFT and FIR filter circuits is presented. The proposed SOP based engine uses an improved column compression algorithm, and handles the sign of the input efficiently. The partial products of the computation are compressed down to two operands, which are then added using a single hybrid adder. The problem of synthesizing DFT and FIR filters…mehr

Produktbeschreibung
Discrete Fourier Transform (DFT) and Finite Impulse Response (FIR) filters are extensively used in Digital Signal Processing (DSP) and Image Processing. In this book, an arithmetic Sum-of-Product (SOP) based approach to implement area- and delay-efficient DFT and FIR filter circuits is presented. The proposed SOP based engine uses an improved column compression algorithm, and handles the sign of the input efficiently. The partial products of the computation are compressed down to two operands, which are then added using a single hybrid adder. The problem of synthesizing DFT and FIR filters circuits can also be cast as an instance of the Multiple Constant Multiplication (MCM) problem. RAG-n is one of the best known algorithms for realizing an MCM block with the minimum number of adders. For DFT coefficients, the proposed approach yields faster circuits (by about 12-13%) with low area penalty (about 5%), as compared to RAG-n. Significant speed-ups are also observed for a set of FIRfilters with hard-to-implement coefficients.
Autorenporträt
Born on Feb 26,1988 in India. He received B.TECH (Electronics and instrumentation)from I.E.T M.J.P Rohilkhand Univ. Bareilly,India in 2011.He also did M.E in Instrumentation and Control from Thapar Univ. Patiala,India in 2013. His areas of interest include optimal control, Soft Computing and process control.