Alfred North Whitehead
A Treatise on Universal Algebra
Alfred North Whitehead
A Treatise on Universal Algebra
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An introduction to universal algebra by the celebrated mathematician, physicist and philosopher.
Andere Kunden interessierten sich auch für
- George BooleA Treatise on Differential Equations60,99 €
- William BoerickeThe Treatment Of Disease With The Twelve Tissue Remedies Being A Treatise On Biochemistry31,99 €
- A. E. H. LoveA treatise on the mathematical theory of elasticity50,99 €
- Joseph Timothy HaydnHaydn's Dictionary Of Dates And Universal Information Relating To All Ages And Nations: Containing The History Of The World To The Autumn Of 188156,99 €
- Azhar ul Haque SarioResonance of Existence23,99 €
- Horace Hayman WilsonA Manual of Universal History and Chronology37,99 €
- E. S. MontgomeryThe Bull Terrier - A Comprehensive Treatise On The History, Management, Breeding, Training, Care, Showing And Judging37,99 €
-
-
-
An introduction to universal algebra by the celebrated mathematician, physicist and philosopher.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 620
- Erscheinungstermin: 1. Juli 2009
- Englisch
- Abmessung: 244mm x 170mm x 34mm
- Gewicht: 1054g
- ISBN-13: 9781108001687
- ISBN-10: 1108001688
- Artikelnr.: 26819509
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 620
- Erscheinungstermin: 1. Juli 2009
- Englisch
- Abmessung: 244mm x 170mm x 34mm
- Gewicht: 1054g
- ISBN-13: 9781108001687
- ISBN-10: 1108001688
- Artikelnr.: 26819509
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
An English mathematician and philosopher, Alfred North Whitehead provided the foundation for the school of thought known as process philosophy. With an academic career that spanned from Cambridge to Harvard, Whitehead wrote extensively on mathematics, metaphysis, and philosophy. He died in Massachusetts in 1947.
Part I. Principles of Algebraic Symbolism: 1. On the nature of a calculus
2. Manifolds
3. Principles of universal algebra
Part II. The Algebra of Symbolic Logic: 1. The algebra of symbolic logic
2. The algebra of symbolic logic (continued)
3. Existential expressions
4. Application to logic
5. Propositional interpretation
Part III. Positional Manifolds: 1. Fundamental propositions
2. Straight lines and planes
3. Quadrics
4. Intensity
Part IV. Calculus of Extension: 1. Combinatorial multiplication
2. Regressive multiplication
3. Supplements
4. Descriptive geometry
5. Descriptive geometry of conics and cubics
6. Matrices
Part V. Extensive Manifolds of Three Dimensions: 1. Systems of forces
2. Groups of systems of forces
3. In variants of groups
4. Matrices and forces
Part VI. Theory of Metrics: 1. Theory of distance
2. Elliptic geometry
3. Extensive manifolds and elliptic geometry
4. Hyperbolic geometry
5. Hyperbolic geometry (continued)
6. Kinematics in three dimensions
7. Curves and surfaces
8. Transition to parabolic geometry
Part VII. The Calculus of Extension to Geometry: 1. Vectors
2. Vectors (continued)
3. Curves and surfaces
4. Pure vector formulae.
2. Manifolds
3. Principles of universal algebra
Part II. The Algebra of Symbolic Logic: 1. The algebra of symbolic logic
2. The algebra of symbolic logic (continued)
3. Existential expressions
4. Application to logic
5. Propositional interpretation
Part III. Positional Manifolds: 1. Fundamental propositions
2. Straight lines and planes
3. Quadrics
4. Intensity
Part IV. Calculus of Extension: 1. Combinatorial multiplication
2. Regressive multiplication
3. Supplements
4. Descriptive geometry
5. Descriptive geometry of conics and cubics
6. Matrices
Part V. Extensive Manifolds of Three Dimensions: 1. Systems of forces
2. Groups of systems of forces
3. In variants of groups
4. Matrices and forces
Part VI. Theory of Metrics: 1. Theory of distance
2. Elliptic geometry
3. Extensive manifolds and elliptic geometry
4. Hyperbolic geometry
5. Hyperbolic geometry (continued)
6. Kinematics in three dimensions
7. Curves and surfaces
8. Transition to parabolic geometry
Part VII. The Calculus of Extension to Geometry: 1. Vectors
2. Vectors (continued)
3. Curves and surfaces
4. Pure vector formulae.
Part I. Principles of Algebraic Symbolism: 1. On the nature of a calculus
2. Manifolds
3. Principles of universal algebra
Part II. The Algebra of Symbolic Logic: 1. The algebra of symbolic logic
2. The algebra of symbolic logic (continued)
3. Existential expressions
4. Application to logic
5. Propositional interpretation
Part III. Positional Manifolds: 1. Fundamental propositions
2. Straight lines and planes
3. Quadrics
4. Intensity
Part IV. Calculus of Extension: 1. Combinatorial multiplication
2. Regressive multiplication
3. Supplements
4. Descriptive geometry
5. Descriptive geometry of conics and cubics
6. Matrices
Part V. Extensive Manifolds of Three Dimensions: 1. Systems of forces
2. Groups of systems of forces
3. In variants of groups
4. Matrices and forces
Part VI. Theory of Metrics: 1. Theory of distance
2. Elliptic geometry
3. Extensive manifolds and elliptic geometry
4. Hyperbolic geometry
5. Hyperbolic geometry (continued)
6. Kinematics in three dimensions
7. Curves and surfaces
8. Transition to parabolic geometry
Part VII. The Calculus of Extension to Geometry: 1. Vectors
2. Vectors (continued)
3. Curves and surfaces
4. Pure vector formulae.
2. Manifolds
3. Principles of universal algebra
Part II. The Algebra of Symbolic Logic: 1. The algebra of symbolic logic
2. The algebra of symbolic logic (continued)
3. Existential expressions
4. Application to logic
5. Propositional interpretation
Part III. Positional Manifolds: 1. Fundamental propositions
2. Straight lines and planes
3. Quadrics
4. Intensity
Part IV. Calculus of Extension: 1. Combinatorial multiplication
2. Regressive multiplication
3. Supplements
4. Descriptive geometry
5. Descriptive geometry of conics and cubics
6. Matrices
Part V. Extensive Manifolds of Three Dimensions: 1. Systems of forces
2. Groups of systems of forces
3. In variants of groups
4. Matrices and forces
Part VI. Theory of Metrics: 1. Theory of distance
2. Elliptic geometry
3. Extensive manifolds and elliptic geometry
4. Hyperbolic geometry
5. Hyperbolic geometry (continued)
6. Kinematics in three dimensions
7. Curves and surfaces
8. Transition to parabolic geometry
Part VII. The Calculus of Extension to Geometry: 1. Vectors
2. Vectors (continued)
3. Curves and surfaces
4. Pure vector formulae.