Banesh Hoffmann
About Vectors
10,99 €
inkl. MwSt.
Versandfertig in über 4 Wochen
Banesh Hoffmann
About Vectors
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
No calculus needed, but this is not an elementary book. Introduces vectors, algebraic notation and basic ideas, vector algebra and scalars. Includes 386 exercises.
Andere Kunden interessierten sich auch für
- Homer E NewellVector Analysis13,99 €
- C E SpringerTensor and Vector Analysis17,99 €
- George E HayVector and Tensor Analysis12,99 €
- Michael J CroweA History of Vector Analysis17,99 €
- Tullio Levi-CivitaThe Absolute Differential Calculus (Calculus of Tensors)24,99 €
- Richard L EisenmanMatrix Vector Analysis17,99 €
- G. TempleCartesian Tensors9,99 €
-
-
-
No calculus needed, but this is not an elementary book. Introduces vectors, algebraic notation and basic ideas, vector algebra and scalars. Includes 386 exercises.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Dover Publications
- Seitenzahl: 144
- Erscheinungstermin: 1. Juni 1975
- Englisch
- Abmessung: 209mm x 144mm x 9mm
- Gewicht: 213g
- ISBN-13: 9780486604893
- ISBN-10: 0486604896
- Artikelnr.: 21508432
- Verlag: Dover Publications
- Seitenzahl: 144
- Erscheinungstermin: 1. Juni 1975
- Englisch
- Abmessung: 209mm x 144mm x 9mm
- Gewicht: 213g
- ISBN-13: 9780486604893
- ISBN-10: 0486604896
- Artikelnr.: 21508432
Banesh Hoffmann (1906-86) received his PhD from Princeton University. At Princeton's Institute for Advanced Study, he collaborated with Albert Einstein and Leopold Infeld on the classic paper "Gravitational Equations and the Problem of Motion." Hoffmann taught at Queens College for more than 40 years.
1 INTRODUCING VECTORS 1. Defining a vector 2. The parallelogram law 3.
Journeys are not vectors 4. Displacements are vectors 5. Why vectors are
important 6. The curious incident of the vectorial tribe 7. Some awkward
questions 2 ALGEBRAIC NOTATION AND BASIC IDEAS 1. Equality and addition 2.
Multiplication by numbers 3. Subtraction 4. Speed and velocity 5.
Acceleration 6. Elementary statics in two dimensions 7. Couples 8. The
problem of location. Vector fields 3 VECTOR ALGEBRA 1. Components 2. Unit
orthogonal triads 3. Position vectors 4. Coordinates 5. Direction cosines
6. Orthogonal projections 7. Projections of areas 4 SCALARS. SCALAR
PRODUCTS 1. Units and scalars 2. Scalar products 3. Scalar products and
unit orthogonal triads 5 VECTOR PRODUCTS. QUOTIENTS OF VECTORS 1. Areas of
parallelograms 2. "Cross products of i, j, and k" 3. "Components of cross
products relative to i, j, and k" 4. Triple products 5. Moments 6. Angular
displacements 7. Angular velocity 8. Momentum and angular momentum 9. Areas
and vectorial addition 10. Vector products in right- and left-handed
reference frames 11. Location and cross products 12. Double cross 13.
Division of vectors 6 TENSORS 1. How components of vectors transform 2. The
index notation 3. The new concept of a vector 4. Tensors 5. Scalars.
Contraction 6. Visualizing tensors 7. Symmetry and antisymmetry. Cross
products 8. Magnitudes. The metrical tensor 9. Scalar products 10. What
then is a vector? INDEX
Journeys are not vectors 4. Displacements are vectors 5. Why vectors are
important 6. The curious incident of the vectorial tribe 7. Some awkward
questions 2 ALGEBRAIC NOTATION AND BASIC IDEAS 1. Equality and addition 2.
Multiplication by numbers 3. Subtraction 4. Speed and velocity 5.
Acceleration 6. Elementary statics in two dimensions 7. Couples 8. The
problem of location. Vector fields 3 VECTOR ALGEBRA 1. Components 2. Unit
orthogonal triads 3. Position vectors 4. Coordinates 5. Direction cosines
6. Orthogonal projections 7. Projections of areas 4 SCALARS. SCALAR
PRODUCTS 1. Units and scalars 2. Scalar products 3. Scalar products and
unit orthogonal triads 5 VECTOR PRODUCTS. QUOTIENTS OF VECTORS 1. Areas of
parallelograms 2. "Cross products of i, j, and k" 3. "Components of cross
products relative to i, j, and k" 4. Triple products 5. Moments 6. Angular
displacements 7. Angular velocity 8. Momentum and angular momentum 9. Areas
and vectorial addition 10. Vector products in right- and left-handed
reference frames 11. Location and cross products 12. Double cross 13.
Division of vectors 6 TENSORS 1. How components of vectors transform 2. The
index notation 3. The new concept of a vector 4. Tensors 5. Scalars.
Contraction 6. Visualizing tensors 7. Symmetry and antisymmetry. Cross
products 8. Magnitudes. The metrical tensor 9. Scalar products 10. What
then is a vector? INDEX
1 INTRODUCING VECTORS 1. Defining a vector 2. The parallelogram law 3.
Journeys are not vectors 4. Displacements are vectors 5. Why vectors are
important 6. The curious incident of the vectorial tribe 7. Some awkward
questions 2 ALGEBRAIC NOTATION AND BASIC IDEAS 1. Equality and addition 2.
Multiplication by numbers 3. Subtraction 4. Speed and velocity 5.
Acceleration 6. Elementary statics in two dimensions 7. Couples 8. The
problem of location. Vector fields 3 VECTOR ALGEBRA 1. Components 2. Unit
orthogonal triads 3. Position vectors 4. Coordinates 5. Direction cosines
6. Orthogonal projections 7. Projections of areas 4 SCALARS. SCALAR
PRODUCTS 1. Units and scalars 2. Scalar products 3. Scalar products and
unit orthogonal triads 5 VECTOR PRODUCTS. QUOTIENTS OF VECTORS 1. Areas of
parallelograms 2. "Cross products of i, j, and k" 3. "Components of cross
products relative to i, j, and k" 4. Triple products 5. Moments 6. Angular
displacements 7. Angular velocity 8. Momentum and angular momentum 9. Areas
and vectorial addition 10. Vector products in right- and left-handed
reference frames 11. Location and cross products 12. Double cross 13.
Division of vectors 6 TENSORS 1. How components of vectors transform 2. The
index notation 3. The new concept of a vector 4. Tensors 5. Scalars.
Contraction 6. Visualizing tensors 7. Symmetry and antisymmetry. Cross
products 8. Magnitudes. The metrical tensor 9. Scalar products 10. What
then is a vector? INDEX
Journeys are not vectors 4. Displacements are vectors 5. Why vectors are
important 6. The curious incident of the vectorial tribe 7. Some awkward
questions 2 ALGEBRAIC NOTATION AND BASIC IDEAS 1. Equality and addition 2.
Multiplication by numbers 3. Subtraction 4. Speed and velocity 5.
Acceleration 6. Elementary statics in two dimensions 7. Couples 8. The
problem of location. Vector fields 3 VECTOR ALGEBRA 1. Components 2. Unit
orthogonal triads 3. Position vectors 4. Coordinates 5. Direction cosines
6. Orthogonal projections 7. Projections of areas 4 SCALARS. SCALAR
PRODUCTS 1. Units and scalars 2. Scalar products 3. Scalar products and
unit orthogonal triads 5 VECTOR PRODUCTS. QUOTIENTS OF VECTORS 1. Areas of
parallelograms 2. "Cross products of i, j, and k" 3. "Components of cross
products relative to i, j, and k" 4. Triple products 5. Moments 6. Angular
displacements 7. Angular velocity 8. Momentum and angular momentum 9. Areas
and vectorial addition 10. Vector products in right- and left-handed
reference frames 11. Location and cross products 12. Double cross 13.
Division of vectors 6 TENSORS 1. How components of vectors transform 2. The
index notation 3. The new concept of a vector 4. Tensors 5. Scalars.
Contraction 6. Visualizing tensors 7. Symmetry and antisymmetry. Cross
products 8. Magnitudes. The metrical tensor 9. Scalar products 10. What
then is a vector? INDEX