This thesis work presents the implementation and validation of image processing problems in hardware to estimate the performance and precision gain. It compares the implementation for the addressed problem on a Field Programmable Gate Array (FPGA) with a software implementation for a General Purpose Processor (GPP) architecture. For both solutions the implementation costs for their development is an important aspect in the validation. The analysis of the flexibility and extendability that can be achieved by a modular implementation for the FPGA design was another major aspect. This work is based upon approaches, which included the detection of Binary Large OBjects (BLOBs) in static images and continuous video streams. One addressed problem of this work is the tracking of the detected BLOBs in continuous image material. This has been implemented for the FPGA platform and the GPP architecture. Both approaches have been compared with respect to performance and precision.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno