170,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
85 °P sammeln
  • Gebundenes Buch

This book explores evidence-based practice in college science teaching. It is grounded in disciplinary education research by practicing scientists who have chosen to take Wieman's (2014) challenge seriously, and to investigate claims about the efficacy of alternative strategies in college science teaching. In editing this book, we have chosen to showcase outstanding cases of exemplary practice supported by solid evidence, and to include practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. Our intention is to let these distinguished…mehr

Produktbeschreibung
This book explores evidence-based practice in college science teaching. It is grounded in disciplinary education research by practicing scientists who have chosen to take Wieman's (2014) challenge seriously, and to investigate claims about the efficacy of alternative strategies in college science teaching. In editing this book, we have chosen to showcase outstanding cases of exemplary practice supported by solid evidence, and to include practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. Our intention is to let these distinguished scientists speak for themselves and to offer authentic guidance to those who seek models of excellence. Our primary audience consists of the thousands of dedicated faculty and graduate students who teach undergraduate science at community and technical colleges, 4-year liberal arts institutions, comprehensive regional campuses, and flagship research universities.

In keeping with Wieman's challenge, our primary focus has been on identifying classroom practices that encourage and support meaningful learning and conceptual understanding in the natural sciences. The content is structured as follows: after an Introduction based on Constructivist Learning Theory (Section I), the practices we explore are Eliciting Ideas and Encouraging Reflection (Section II); Using Clickers to Engage Students (Section III); Supporting Peer Interaction through Small Group Activities (Section IV); Restructuring Curriculum and Instruction (Section V); Rethinking the Physical Environment (Section VI); Enhancing Understanding with Technology (Section VII), and Assessing Understanding (Section VIII). The book's final section (IX) is devoted to Professional Issues facing college and university faculty who choose to adopt active learning in their courses.

The common feature underlying all of the strategies described in this book is their emphasis on actively engaging students who seek to make sense of natural objects and events. Many of the strategies we highlight emerge from a constructivist view of learning that has gained widespread acceptance in recent years. In this view, learners make sense of the world by forging connections between new ideas and those that are part of their existing knowledge base. For most students, that knowledge base is riddled with a host of naïve notions, misconceptions and alternative conceptions they have acquired throughout their lives. To a considerable extent, the job of the teacher is to coax out these ideas; to help students understand how their ideas differ from the scientifically accepted view; to assist as students restructure and reconcile their newly acquired knowledge; and to provide opportunities for students to evaluate what they have learned and apply it in novel circumstances. Clearly, this prescription demands far more than most college and university scientists have been prepared for.

Autorenporträt
Joel J. Mintzes (B.S., M.S. Illinois, Ph.D. Northwestern) is a veteran of 40 years in the college biology classroom, having served on faculties in Canada, North Carolina, and California.  His widely published research focuses on conceptual development and cognitive processes in biology, and environmental education. He has served on numerous editorial boards, as co-editor of three previous volumes, and worked as Director of Research of The Private Universe Project, and Senior Researcher of the MOSART and FICSS projects at the Harvard-Smithsonian Center for Astrophysics, Lead Fellow at the National Institute for Science Education (University of Wisconsin), Fulbright-Technion Fellow at the Israel Institute of Technology, Distinguished Visiting Professor at the Homi Bhaba Centre for Science Education in India, and Visiting Scholar at Providence University in Taiwan, and Beijing Normal University in the Peoples Republic of China. He was co-recipient of the Award of Merit given by the editorial board of the journal, Science Education, for his work on alternative conceptions in science.   Emily M. Walter (B.S. Iowa State, M.S. Western Illinois, Ph.D. Missouri, Post Doc, Western Michigan) is Assistant Professor of Biology and Director of the STEM Education Center at California State University, Fresno.  Her extensive research, publications and presentations focus on teaching practices and pedagogical content knowledge of college science faculty, and evolution education.  Her work has resulted in the development and validation of instruments that examine students' understanding of evolution and climate change, and on the influence of the academic workplace on faculty instructional practices.  Currently she is engaged in a collaborative, on-going effort to improve college science teaching in the Arab Republic of Egypt.