Ashish Tewari
Adaptive Aeroservoelastic Control
Herausgeber: Belobaba, Peter; Seabridge, Allan; Cooper, Jonathan
Ashish Tewari
Adaptive Aeroservoelastic Control
Herausgeber: Belobaba, Peter; Seabridge, Allan; Cooper, Jonathan
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This is the first book on adaptive aeroservoelasticity and it presents the nonlinear and recursive techniques for adaptively controlling the uncertain aeroelastic dynamics _ Covers both linear and nonlinear control methods in a comprehensive manner _ Mathematical presentation of adaptive control concepts is rigorous _ Several novel applications of adaptive control presented here are not to be found in other literature on the topic _ Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations
Andere Kunden interessierten sich auch für
- Wayne DurhamAircraft Control Allocation158,99 €
- David AllertonFlight Simulation Software129,99 €
- Farhan A. FaruqiDifferential Game Theory with Applications to Missiles and Autonomous Systems Guidance172,99 €
- Ashish TewariFoundations of Space Dynamics107,99 €
- Trevor M. YoungPerformance of the Jet Transport Airplane140,99 €
- John ValasekMorphing Aerospace Vehicles and Structures145,99 €
- Saeed FarokhiFuture Propulsion Systems and Energy Sources in Sustainable Aviation155,99 €
-
-
-
This is the first book on adaptive aeroservoelasticity and it presents the nonlinear and recursive techniques for adaptively controlling the uncertain aeroelastic dynamics
_ Covers both linear and nonlinear control methods in a comprehensive manner
_ Mathematical presentation of adaptive control concepts is rigorous
_ Several novel applications of adaptive control presented here are not to be found in other literature on the topic
_ Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
_ Covers both linear and nonlinear control methods in a comprehensive manner
_ Mathematical presentation of adaptive control concepts is rigorous
_ Several novel applications of adaptive control presented here are not to be found in other literature on the topic
_ Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Aerospace Series (PEP)
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W118457630
- 1. Auflage
- Seitenzahl: 392
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 246mm x 170mm x 25mm
- Gewicht: 748g
- ISBN-13: 9781118457634
- ISBN-10: 1118457633
- Artikelnr.: 43364365
- Aerospace Series (PEP)
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W118457630
- 1. Auflage
- Seitenzahl: 392
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 246mm x 170mm x 25mm
- Gewicht: 748g
- ISBN-13: 9781118457634
- ISBN-10: 1118457633
- Artikelnr.: 43364365
Ashish Tewari is a Professor of Aerospace Engineering at the Indian Institute of Technology, Kanpur. He specializes in Flight Mechanics and Control, and is the single author of five previous books, including Aeroservoelasticity - Modeling and Control (Birkhäuser, Boston, 2015) and Advanced Control of Aircraft, Spacecraft, and Rockets (Wiley, Chichester, 2011). He is also the author of several research papers in aircraft and spacecraft dynamics and control systems. He is an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA), and a Senior Member of the Institution of Electrical and Electronics Engineers (IEEE). Prof. Tewari holds Ph.D. and M.S. degrees in Aerospace Engineering from the University of Missouri-Rolla, and a B.Tech. degree in Aeronautical Engineering from the Indian Institute of Technology, Kanpur.
About the Author xv
Series Editor's Preface xvii
Preface xix
1 Introduction 1
1.1 Aeroservoelasticity 1
1.2 Unsteady Aerodynamics 4
1.3 Linear Feedback Design 7
1.4 Parametric Uncertainty and Variation 11
1.5 Adaptive Control Design 13
1.5.1 Adaptive Control Laws 15
1.6 Organization 20
References 21
2 Linear Control Systems 23
2.1 Notation 23
2.2 Basic Control Concepts 23
2.3 Input-Output Representation 26
2.3.1 Gain and Stability 26
2.3.2 Small Gain Theorem 27
2.4 Input-Output Linear Systems 28
2.4.1 Laplace Transform and Transfer Function 30
2.5 Loop Shaping of Linear Control Systems 33
2.5.1 Nyquist Theorem 34
2.5.2 Gain and Phase Margins 36
2.5.3 Loop Shaping for Single Variable Systems 38
2.5.4 Singular Values 40
2.5.5 Multi-variable Robustness Analysis: Input-Output Model 42
2.6 State-Space Representation 42
2.6.1 State-Space Theory of Linear Systems 43
2.6.2 State Feedback by Eigenstructure Assignment 49
2.6.3 Linear Observers and Output Feedback Compensators 50
2.7 Stochastic Systems 52
2.7.1 Ergodic Processes 57
2.7.2 Filtering of Random Noise 59
2.7.3 Wiener Filter 60
2.7.4 Kalman Filter 61
2.8 Optimal Control 65
2.8.1 Euler-Lagrange Equations 65
2.8.2 Linear, Quadratic Optimal Control 67
2.9 Robust Control Design by LQG/LTR Synthesis 71
2.10 H2/H infinity Design 77
2.10.1 H2 Design Procedure 79
2.10.2 H infinity Design Procedure 80
2.11 my-Synthesis 81
2.11.1 Linear Fractional Transformation 83
References 86
3 Aeroelastic Modelling 87
3.1 Structural Model 88
3.1.1 Statics 88
3.1.2 Dynamics 91
3.1.3 Typical Wing Section 93
3.2 Aerodynamic Modelling Concepts 98
3.2.1 Governing Equations for Unsteady Flow 99
3.2.2 Full-Potential Equation 100
3.2.3 Transonic Small-Disturbance Equation 104
3.3 Baseline Aerodynamic Model 106
3.3.1 Integral Equation Formulation 108
3.3.2 Subsonic Unsteady Aerodynamics 109
3.3.3 Supersonic Unsteady Aerodynamics 114
3.4 Preliminary Aeroelastic Modelling Concepts 115
3.5 Ideal Flow Model for Typical Section 120
3.6 Transient Aerodynamics of Typical Section 125
3.7 State-Space Model of the Typical Section 126
3.8 Generalized Aeroelastic Plant 128
References 135
4 Active Flutter Suppression 139
4.1 Single Degree-of-Freedom Flutter 141
4.2 Bending-Torsion Flutter 146
4.3 Active Suppression of Single Degree-of-Freedom Flutter 147
4.4 Active Flutter Suppression of Typical Section 153
4.4.1 Open-Loop Flutter Analysis 154
4.5 Linear Feedback Stabilization 157
4.5.1 Pole-Placement Regulator Design 157
4.5.2 Observer Design 160
4.5.3 Robustness of Compensated System 162
4.6 Active Flutter Suppression of Three-Dimensional Wings 164
References 168
5 Self-Tuning Regulation 171
5.1 Introduction 171
5.2 Online Plant Identification 172
5.2.1 Least-Squares Parameter Estimation 172
5.2.2 Least-Squares Method with Exponential Forgetting 174
5.2.3 Projection Algorithm 174
5.2.4 Autoregressive Identification 175
5.3 Design Methods for Stochastic Self-Tun
Series Editor's Preface xvii
Preface xix
1 Introduction 1
1.1 Aeroservoelasticity 1
1.2 Unsteady Aerodynamics 4
1.3 Linear Feedback Design 7
1.4 Parametric Uncertainty and Variation 11
1.5 Adaptive Control Design 13
1.5.1 Adaptive Control Laws 15
1.6 Organization 20
References 21
2 Linear Control Systems 23
2.1 Notation 23
2.2 Basic Control Concepts 23
2.3 Input-Output Representation 26
2.3.1 Gain and Stability 26
2.3.2 Small Gain Theorem 27
2.4 Input-Output Linear Systems 28
2.4.1 Laplace Transform and Transfer Function 30
2.5 Loop Shaping of Linear Control Systems 33
2.5.1 Nyquist Theorem 34
2.5.2 Gain and Phase Margins 36
2.5.3 Loop Shaping for Single Variable Systems 38
2.5.4 Singular Values 40
2.5.5 Multi-variable Robustness Analysis: Input-Output Model 42
2.6 State-Space Representation 42
2.6.1 State-Space Theory of Linear Systems 43
2.6.2 State Feedback by Eigenstructure Assignment 49
2.6.3 Linear Observers and Output Feedback Compensators 50
2.7 Stochastic Systems 52
2.7.1 Ergodic Processes 57
2.7.2 Filtering of Random Noise 59
2.7.3 Wiener Filter 60
2.7.4 Kalman Filter 61
2.8 Optimal Control 65
2.8.1 Euler-Lagrange Equations 65
2.8.2 Linear, Quadratic Optimal Control 67
2.9 Robust Control Design by LQG/LTR Synthesis 71
2.10 H2/H infinity Design 77
2.10.1 H2 Design Procedure 79
2.10.2 H infinity Design Procedure 80
2.11 my-Synthesis 81
2.11.1 Linear Fractional Transformation 83
References 86
3 Aeroelastic Modelling 87
3.1 Structural Model 88
3.1.1 Statics 88
3.1.2 Dynamics 91
3.1.3 Typical Wing Section 93
3.2 Aerodynamic Modelling Concepts 98
3.2.1 Governing Equations for Unsteady Flow 99
3.2.2 Full-Potential Equation 100
3.2.3 Transonic Small-Disturbance Equation 104
3.3 Baseline Aerodynamic Model 106
3.3.1 Integral Equation Formulation 108
3.3.2 Subsonic Unsteady Aerodynamics 109
3.3.3 Supersonic Unsteady Aerodynamics 114
3.4 Preliminary Aeroelastic Modelling Concepts 115
3.5 Ideal Flow Model for Typical Section 120
3.6 Transient Aerodynamics of Typical Section 125
3.7 State-Space Model of the Typical Section 126
3.8 Generalized Aeroelastic Plant 128
References 135
4 Active Flutter Suppression 139
4.1 Single Degree-of-Freedom Flutter 141
4.2 Bending-Torsion Flutter 146
4.3 Active Suppression of Single Degree-of-Freedom Flutter 147
4.4 Active Flutter Suppression of Typical Section 153
4.4.1 Open-Loop Flutter Analysis 154
4.5 Linear Feedback Stabilization 157
4.5.1 Pole-Placement Regulator Design 157
4.5.2 Observer Design 160
4.5.3 Robustness of Compensated System 162
4.6 Active Flutter Suppression of Three-Dimensional Wings 164
References 168
5 Self-Tuning Regulation 171
5.1 Introduction 171
5.2 Online Plant Identification 172
5.2.1 Least-Squares Parameter Estimation 172
5.2.2 Least-Squares Method with Exponential Forgetting 174
5.2.3 Projection Algorithm 174
5.2.4 Autoregressive Identification 175
5.3 Design Methods for Stochastic Self-Tun
About the Author xv
Series Editor's Preface xvii
Preface xix
1 Introduction 1
1.1 Aeroservoelasticity 1
1.2 Unsteady Aerodynamics 4
1.3 Linear Feedback Design 7
1.4 Parametric Uncertainty and Variation 11
1.5 Adaptive Control Design 13
1.5.1 Adaptive Control Laws 15
1.6 Organization 20
References 21
2 Linear Control Systems 23
2.1 Notation 23
2.2 Basic Control Concepts 23
2.3 Input-Output Representation 26
2.3.1 Gain and Stability 26
2.3.2 Small Gain Theorem 27
2.4 Input-Output Linear Systems 28
2.4.1 Laplace Transform and Transfer Function 30
2.5 Loop Shaping of Linear Control Systems 33
2.5.1 Nyquist Theorem 34
2.5.2 Gain and Phase Margins 36
2.5.3 Loop Shaping for Single Variable Systems 38
2.5.4 Singular Values 40
2.5.5 Multi-variable Robustness Analysis: Input-Output Model 42
2.6 State-Space Representation 42
2.6.1 State-Space Theory of Linear Systems 43
2.6.2 State Feedback by Eigenstructure Assignment 49
2.6.3 Linear Observers and Output Feedback Compensators 50
2.7 Stochastic Systems 52
2.7.1 Ergodic Processes 57
2.7.2 Filtering of Random Noise 59
2.7.3 Wiener Filter 60
2.7.4 Kalman Filter 61
2.8 Optimal Control 65
2.8.1 Euler-Lagrange Equations 65
2.8.2 Linear, Quadratic Optimal Control 67
2.9 Robust Control Design by LQG/LTR Synthesis 71
2.10 H2/H infinity Design 77
2.10.1 H2 Design Procedure 79
2.10.2 H infinity Design Procedure 80
2.11 my-Synthesis 81
2.11.1 Linear Fractional Transformation 83
References 86
3 Aeroelastic Modelling 87
3.1 Structural Model 88
3.1.1 Statics 88
3.1.2 Dynamics 91
3.1.3 Typical Wing Section 93
3.2 Aerodynamic Modelling Concepts 98
3.2.1 Governing Equations for Unsteady Flow 99
3.2.2 Full-Potential Equation 100
3.2.3 Transonic Small-Disturbance Equation 104
3.3 Baseline Aerodynamic Model 106
3.3.1 Integral Equation Formulation 108
3.3.2 Subsonic Unsteady Aerodynamics 109
3.3.3 Supersonic Unsteady Aerodynamics 114
3.4 Preliminary Aeroelastic Modelling Concepts 115
3.5 Ideal Flow Model for Typical Section 120
3.6 Transient Aerodynamics of Typical Section 125
3.7 State-Space Model of the Typical Section 126
3.8 Generalized Aeroelastic Plant 128
References 135
4 Active Flutter Suppression 139
4.1 Single Degree-of-Freedom Flutter 141
4.2 Bending-Torsion Flutter 146
4.3 Active Suppression of Single Degree-of-Freedom Flutter 147
4.4 Active Flutter Suppression of Typical Section 153
4.4.1 Open-Loop Flutter Analysis 154
4.5 Linear Feedback Stabilization 157
4.5.1 Pole-Placement Regulator Design 157
4.5.2 Observer Design 160
4.5.3 Robustness of Compensated System 162
4.6 Active Flutter Suppression of Three-Dimensional Wings 164
References 168
5 Self-Tuning Regulation 171
5.1 Introduction 171
5.2 Online Plant Identification 172
5.2.1 Least-Squares Parameter Estimation 172
5.2.2 Least-Squares Method with Exponential Forgetting 174
5.2.3 Projection Algorithm 174
5.2.4 Autoregressive Identification 175
5.3 Design Methods for Stochastic Self-Tun
Series Editor's Preface xvii
Preface xix
1 Introduction 1
1.1 Aeroservoelasticity 1
1.2 Unsteady Aerodynamics 4
1.3 Linear Feedback Design 7
1.4 Parametric Uncertainty and Variation 11
1.5 Adaptive Control Design 13
1.5.1 Adaptive Control Laws 15
1.6 Organization 20
References 21
2 Linear Control Systems 23
2.1 Notation 23
2.2 Basic Control Concepts 23
2.3 Input-Output Representation 26
2.3.1 Gain and Stability 26
2.3.2 Small Gain Theorem 27
2.4 Input-Output Linear Systems 28
2.4.1 Laplace Transform and Transfer Function 30
2.5 Loop Shaping of Linear Control Systems 33
2.5.1 Nyquist Theorem 34
2.5.2 Gain and Phase Margins 36
2.5.3 Loop Shaping for Single Variable Systems 38
2.5.4 Singular Values 40
2.5.5 Multi-variable Robustness Analysis: Input-Output Model 42
2.6 State-Space Representation 42
2.6.1 State-Space Theory of Linear Systems 43
2.6.2 State Feedback by Eigenstructure Assignment 49
2.6.3 Linear Observers and Output Feedback Compensators 50
2.7 Stochastic Systems 52
2.7.1 Ergodic Processes 57
2.7.2 Filtering of Random Noise 59
2.7.3 Wiener Filter 60
2.7.4 Kalman Filter 61
2.8 Optimal Control 65
2.8.1 Euler-Lagrange Equations 65
2.8.2 Linear, Quadratic Optimal Control 67
2.9 Robust Control Design by LQG/LTR Synthesis 71
2.10 H2/H infinity Design 77
2.10.1 H2 Design Procedure 79
2.10.2 H infinity Design Procedure 80
2.11 my-Synthesis 81
2.11.1 Linear Fractional Transformation 83
References 86
3 Aeroelastic Modelling 87
3.1 Structural Model 88
3.1.1 Statics 88
3.1.2 Dynamics 91
3.1.3 Typical Wing Section 93
3.2 Aerodynamic Modelling Concepts 98
3.2.1 Governing Equations for Unsteady Flow 99
3.2.2 Full-Potential Equation 100
3.2.3 Transonic Small-Disturbance Equation 104
3.3 Baseline Aerodynamic Model 106
3.3.1 Integral Equation Formulation 108
3.3.2 Subsonic Unsteady Aerodynamics 109
3.3.3 Supersonic Unsteady Aerodynamics 114
3.4 Preliminary Aeroelastic Modelling Concepts 115
3.5 Ideal Flow Model for Typical Section 120
3.6 Transient Aerodynamics of Typical Section 125
3.7 State-Space Model of the Typical Section 126
3.8 Generalized Aeroelastic Plant 128
References 135
4 Active Flutter Suppression 139
4.1 Single Degree-of-Freedom Flutter 141
4.2 Bending-Torsion Flutter 146
4.3 Active Suppression of Single Degree-of-Freedom Flutter 147
4.4 Active Flutter Suppression of Typical Section 153
4.4.1 Open-Loop Flutter Analysis 154
4.5 Linear Feedback Stabilization 157
4.5.1 Pole-Placement Regulator Design 157
4.5.2 Observer Design 160
4.5.3 Robustness of Compensated System 162
4.6 Active Flutter Suppression of Three-Dimensional Wings 164
References 168
5 Self-Tuning Regulation 171
5.1 Introduction 171
5.2 Online Plant Identification 172
5.2.1 Least-Squares Parameter Estimation 172
5.2.2 Least-Squares Method with Exponential Forgetting 174
5.2.3 Projection Algorithm 174
5.2.4 Autoregressive Identification 175
5.3 Design Methods for Stochastic Self-Tun