54,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Bereits seit längerer Zeit hat sich die additive Zahlentheorie als gesonderter Zweig innerhalb der Zahlentheorie herausgebildet; aber erst in den letzten Jahrzehnten hat dieses Gebiet neue Antriebe erhalten. In der klassischen additiven Zahlentheorie waren die Untersuchungs objekte im wesentlichen solche Fragestellungen, die an ganz spezielle Zahlenmengen geknüpft sind, wie etwa das GOLDBAcHsche oder das WARINGSche Problem. Diese bei den Probleme waren es aber auch, die den Anstoß zu einer neuen Entwicklung in der additiven Zahlentheorie gaben, als 1930 SCHNIRELMANN in seiner fundamentalen…mehr

Produktbeschreibung
Bereits seit längerer Zeit hat sich die additive Zahlentheorie als gesonderter Zweig innerhalb der Zahlentheorie herausgebildet; aber erst in den letzten Jahrzehnten hat dieses Gebiet neue Antriebe erhalten. In der klassischen additiven Zahlentheorie waren die Untersuchungs objekte im wesentlichen solche Fragestellungen, die an ganz spezielle Zahlenmengen geknüpft sind, wie etwa das GOLDBAcHsche oder das WARINGSche Problem. Diese bei den Probleme waren es aber auch, die den Anstoß zu einer neuen Entwicklung in der additiven Zahlentheorie gaben, als 1930 SCHNIRELMANN in seiner fundamentalen Arbeit "über additive Eigenschaften von Zahlen" [lJ einen neuen Zugang zu den ge nannten Problemen fand. SCHNIRELMANN entwickelte nämlich zunächst eine Theorie, die ganz von der speziellen Natur der Primzahlen bzw. der k-ten Potenzen absah und sich allgemein auf Mengen natürlicher Zahlen bezog. Jeder solchen Menge wird eine reelle Zahl, die "Dichte" zuge ordnet, die in gewissem Sinn ein Maß dafür ist, welcher Anteil aus der Gesamtheit aller natürlichen Zahlen der gegebenen Menge angehört. An Stelle der arithmetischen Natur der Zahlenmenge tritt also ein in dieser Weise zu verstehender metrischer Gesichtspunkt. Indem ferner noch die Summe solcher Mengen eingeführt wurde, zeigte sich, daß bereits in großer Allgemeinheit wesentliche Aussagen gemacht werden konnten. In Anschluß an SCHNIRELMANN hat diese allgemeine Theorie der Zahl mengen immer neue Impulse erhalten; somit schien für den vorliegen den Bericht ziemlich zwangsläufig eine grobe Gliederung durch die Stichworte "Summe", "Dichte", bzw. "spezielle Mengen" gegeben zu sein.