- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Modern mechanical and aerospace systems are often very complex and consist of many rigid components interconnected by joints and force elements. This book bridges the gap between rigid body, multi body, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering.
According to the author and reviewers, more than 50% of the material taught in courses such as Advanced Dynamics, Mutibody Dynamics, and Spacecraft Dynamics is common to one another. Where graduate students in Mechanical and Aerospace Engineering may have the potential to work on projects…mehr
Andere Kunden interessierten sich auch für
- Christos KassapoglouDesign and Analysis of Composite Structures139,99 €
- System Health Management280,99 €
- Joe G EisleyAnalysis of Structures145,99 €
- David AllertonPrinciples of Flight Simulation160,99 €
- Roy LangtonAircraft Fuel Systems167,99 €
- Dominic J. DistonComputational Modelling and Simulation of Aircraft and the Environment, Volume 284,99 €
- Thomas A. WardAerospace Propulsion Systems197,99 €
-
-
-
Modern mechanical and aerospace systems are often very complex and consist of many rigid components interconnected by joints and force elements. This book bridges the gap between rigid body, multi body, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering.
According to the author and reviewers, more than 50% of the material taught in courses such as Advanced Dynamics, Mutibody Dynamics, and Spacecraft Dynamics is common to one another. Where graduate students in Mechanical and Aerospace Engineering may have the potential to work on projects that are related to any of the engineering disciplines, they have not been exposed to enough applications in both areas for them to use this information in the real world. This book bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications across different engineering disciplines.
The book begins with a review on coordinate systems and particle dynamics which will teach coordinate frames. The transformation and rotation theory along with the differentiation theory in different coordinate frames will provides the required background to learn the rigid body dynamics based on Newton-Euler principles. Applications to this coverage can be found in vehicle dynamics, spacecraft dynamics, aircraft dynamics, robot dynamics, and multibody dynamics, each in a chapter. The Newton equations of motion will be transformed to Lagrange equation as a bridge to analytical dynamics. The methods of Lagrange and Hamilton will be applied on rigid body dynamics. Finally through the coverage of special applications this text provides understanding of advanced systems without restricting itself to a particular discipline. The author will provide a detailed solutions manual and powerpoint slides as ancillaries to this book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
According to the author and reviewers, more than 50% of the material taught in courses such as Advanced Dynamics, Mutibody Dynamics, and Spacecraft Dynamics is common to one another. Where graduate students in Mechanical and Aerospace Engineering may have the potential to work on projects that are related to any of the engineering disciplines, they have not been exposed to enough applications in both areas for them to use this information in the real world. This book bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications across different engineering disciplines.
The book begins with a review on coordinate systems and particle dynamics which will teach coordinate frames. The transformation and rotation theory along with the differentiation theory in different coordinate frames will provides the required background to learn the rigid body dynamics based on Newton-Euler principles. Applications to this coverage can be found in vehicle dynamics, spacecraft dynamics, aircraft dynamics, robot dynamics, and multibody dynamics, each in a chapter. The Newton equations of motion will be transformed to Lagrange equation as a bridge to analytical dynamics. The methods of Lagrange and Hamilton will be applied on rigid body dynamics. Finally through the coverage of special applications this text provides understanding of advanced systems without restricting itself to a particular discipline. The author will provide a detailed solutions manual and powerpoint slides as ancillaries to this book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1344
- Erscheinungstermin: 29. März 2011
- Englisch
- Abmessung: 245mm x 197mm x 55mm
- Gewicht: 2164g
- ISBN-13: 9780470398357
- ISBN-10: 0470398353
- Artikelnr.: 32463177
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1344
- Erscheinungstermin: 29. März 2011
- Englisch
- Abmessung: 245mm x 197mm x 55mm
- Gewicht: 2164g
- ISBN-13: 9780470398357
- ISBN-10: 0470398353
- Artikelnr.: 32463177
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Reza N. Jazar is a professor of mechanical engineering, receiving his master's degree from Tehran Polytechnic in 1990, specializing in robotics. In 1997, he acquired his PhD from Sharif Institute of Technology in nonlinear dynamics and applied mathematics. Prof. Jazar is a specialist in classical and nonlinear dynamics, and has extensive experience in the field of dynamics and mathematical modeling. Prof. Jazar has worked in numerous universities worldwide, and through his years of work experience, he has formulated many theorems, innovative ideas, and discoveries in classical dynamics, robotics, control, and nonlinear vibrations. Razi Acceleration, Theory of Time Derivative, Order-Free Transformations, Caster Theory, Autodriver Algorithm, Floating-Time Method, Energy-Rate Method, and RMS Optimization Method are some of his discoveries and innovative ideas. Some of his recent discoveries in kinematics dynamics were introduced in Advanced Dynamics for the first time. Prof. Jazar has written over 200 scientific papers and technical reports and has authored more than thirty books including Theory of Applied Robotics: Kinematics, Dynamics, and Control, Second Edition and Vehicle Dynamics: Theory and Application.
Preface xiii
Part I Fundamentals 1
1 Fundamentals of Kinematics 3
1.1 Coordinate Frame and Position Vector 3
1.1.1 Triad 3
1.1.2 Coordinate Frame and Position Vector 4
1.1.3 Vector Definition 10
1.2 Vector Algebra 12
1.2.1 Vector Addition 12
1.2.2 Vector Multiplication 17
1.2.3 Index Notation 26
1.3 Orthogonal Coordinate Frames 31
1.3.1 Orthogonality Condition 31
1.3.2 Unit Vector 34
1.3.3 Direction of Unit Vectors 36
1.4 Differential Geometry 37
1.4.1 Space Curve 38
1.4.2 Surface and Plane 43
1.5 Motion Path Kinematics 46
1.5.1 Vector Function and Derivative 46
1.5.2 Velocity and Acceleration 51
1.5.3 Natural Coordinate Frame 54
1.6 Fields 77
1.6.1 Surface and Orthogonal Mesh 78
1.6.2 Scalar Field and Derivative 85
1.6.3 Vector Field and Derivative 92
Key Symbols 100
Exercises 103
2 Fundamentals of Dynamics 114
2.1 Laws of Motion 114
2.2 Equation of Motion 119
2.2.1 Force and Moment 120
2.2.2 Motion Equation 125
2.3 Special Solutions 131
2.3.1 Force Is a Function of Time, F = F (t) 132
2.3.2 Force Is a Function of Position, F = F(x) 141
2.3.3 Elliptic Functions 148
2.3.4 Force Is a Function of Velocity, F = F (v) 156
2.4 Spatial and Temporal Integrals 165
2.4.1 Spatial Integral: Work and Energy 165
2.4.2 Temporal Integral: Impulse and Momentum 176
2.5 Application of Dynamics 188
2.5.1 Modeling 189
2.5.2 Equations of Motion 197
2.5.3 Dynamic Behavior and Methods of Solution 200
2.5.4 Parameter Adjustment 220
Key Symbols 223
Exercises 226
Part II Geometric Kinematics 241
3 Coordinate Systems 243
3.1 Cartesian Coordinate System 243
3.2 Cylindrical Coordinate System 250
3.3 Spherical Coordinate System 263
3.4 Nonorthogonal Coordinate Frames 269
3.4.1 Reciprocal Base Vectors 269
3.4.2 Reciprocal Coordinate Frame 278
3.4.3 Inner and Outer Vector Product 285
3.4.4 Kinematics in Oblique Coordinate Frames 298
3.5 Curvilinear Coordinate System 300
3.5.1 Principal and Reciprocal Base Vectors 301
3.5.2 Principal-Reciprocal Transformation 311
3.5.3 Curvilinear Geometry 320
3.5.4 Curvilinear Kinematics 325
3.5.5 Kinematics in Curvilinear Coordinates 335
Key Symbols 346
Exercises 347
4 Rotation Kinematics 357
4.1 Rotation About Global Cartesian Axes 357
4.2 Successive Rotations About Global Axes 363
4.3 Global Roll-Pitch-Yaw Angles 370
4.4 Rotation About Local Cartesian Axes 373
4.5 Successive Rotations About Local Axes 376
4.6 Euler Angles 379
4.7 Local Roll-Pitch-Yaw Angles 391
4.8 Local versus Global Rotation 395
4.9 General Rotation 397
4.10 Active and Passive Rotations 409
4.11 Rotation of Rotated Body 411
Key Symbols 415
Exercises 416
5 Orientation Kinematics 422
5.1 Axis-Angle Rotation 422
5.2 Euler Parameters 438
5.3 Quaternion 449
5.4 Spinors and Rotators 457
5.5 Problems in Representing Rotations 459
5.5.1 Rotation Matrix 460
5.5.2 Axis-Angle 461
5.5.3 Euler Angles 462
5.5.4 Quaternion and Euler Parameters 463
5.6 Composition and Decomposition of Rotations 465
5.6.1 Composition of Rotations 466
5.6.2 Decomposition of Rotations 468
Key Symbols 470
Exercises 471
6 Motion Kinematics 477
6.1 Rigid-Body Motion 477
6.2 Homogeneous Transformation 481
6.3 Inverse and Reverse Homogeneous Transformation 494
6.4 Compound Homogeneous Transformation 500
6.5 Screw Motion 517
6.6 Inverse Screw 529
6.7 Compound Screw Transformation 531
6.8 Plücker Line Coordinate 534
6.9 Geometry of Plane and Line 540
6.9.1 Moment 540
6.9.2 Angle and Distance 541
6.9.3 Plane and Line 541
6.10 Screw and Plücker Coordinate 545
Key Symbols 547
Exercises 548
7 Multibody Kinematics 555
7.1 Multibody Connection 555
7.2 Denavit-Hartenberg Rule 563
7.3 Forward Kinematics 584
7.4 Assembling Kinematics 615
7.5 Order-Free Rotation 628
7.6 Order-Free Transformation 635
7.7 Forward Kinematics by Screw 643
7.8 Caster Theory in Vehicles 649
7.9 Inverse Kinematics 662
Key Symbols 684
Exercises 686
Part III Derivative Kinematics 693
8 Velocity Kinematics 695
8.1 Angular Velocity 695
8.2 Time Derivative and Coordinate Frames 718
8.3 Multibody Velocity 727
8.4 Velocity Transformation Matrix 739
8.5 Derivative of a Homogeneous Transformation Matrix 748
8.6 Multibody Velocity 754
8.7 Forward-Velocity Kinematics 757
8.8 Jacobian-Generating Vector 765
8.9 Inverse-Velocity Kinematics 778
Key Symbols 782
Exercises 783
9 Acceleration Kinematics 788
9.1 Angular Acceleration 788
9.2 Second Derivative and Coordinate Frames 810
9.3 Multibody Acceleration 823
9.4 Particle Acceleration 830
9.5 Mixed Double Derivative 858
9.6 Acceleration Transformation Matrix 864
9.7 Forward-Acceleration Kinematics 872
9.8 Inverse-Acceleration Kinematics 874
Key Symbols 877
Exercises 878
10 Constraints 887
10.1 Homogeneity and Isotropy 887
10.2 Describing Space 890
10.2.1 Configuration Space 890
10.2.2 Event Space 896
10.2.3 State Space 900
10.2.4 State-Time Space 908
10.2.5 Kinematic Spaces 910
10.3 Holonomic Constraint 913
10.4 Generalized Coordinate 923
10.5 Constraint Force 932
10.6 Virtual and Actual Works 935
10.7 Nonholonomic Constraint 952
10.7.1 Nonintegrable Constraint 952
10.7.2 Inequality Constraint 962
10.8 Differential Constraint 966
10.9 Generalized Mechanics 970
10.10 Integral of Motion 976
10.11 Methods of Dynamics 996
10.11.1 Lagrange Method 996
10.11.2 Gauss Method 999
10.11.3 Hamilton Method 1002
10.11.4 Gibbs-Appell Method 1009
10.11.5 Kane Method 1013
10.11.6 Nielsen Method 1017
Key Symbols 1021
Exercises 1024
Part IV Dynamics 1031
11 Rigid Body and Mass Moment 1033
11.1 Rigid Body 1033
11.2 Elements of the Mass Moment Matrix 1035
11.3 Transformation of Mass Moment Matrix 1044
11.4 Principal Mass Moments 1058
Key Symbols 1065
Exercises 1066
12 Rigid-Body Dynamics 1072
12.1 Rigid-Body Rotational Cartesian Dynamics 1072
12.2 Rigid-Body Rotational Eulerian Dynamics 1096
12.3 Rigid-Body Translational Dynamics 1101
12.4 Classical Problems of Rigid Bodies 1112
12.4.1 Torque-Free Motion 1112
12.4.2 Spherical Torque-Free Rigid Body 1115
12.4.3 Axisymmetric Torque-Free Rigid Body 1116
12.4.4 Asymmetric Torque-Free Rigid Body 1128
12.4.5 General Motion 1141
12.5 Multibody Dynamics 1157
12.6 Recursive Multibody Dynamics 1170
Key Symbols 1177
Exercises 1179
13 Lagrange Dynamics 1189
13.1 Lagrange Form of Newton Equations 1189
13.2 Lagrange Equation and Potential Force 1203
13.3 Variational Dynamics 1215
13.4 Hamilton Principle 1228
13.5 Lagrange Equation and Constraints 1232
13.6 Conservation Laws 1240
13.6.1 Conservation of Energy 1241
13.6.2 Conservation of Momentum 1243
13.7 Generalized Coordinate System 1244
13.8 Multibody Lagrangian Dynamics 1251
Key Symbols 1262
Exercises 1264
References 1280
A Global Frame Triple Rotation 1287
B Local Frame Triple Rotation 1289
C Principal Central Screw Triple Combination 1291
D Industrial Link DH Matrices 1293
E Trigonometric Formula 1300
Index 1305
Part I Fundamentals 1
1 Fundamentals of Kinematics 3
1.1 Coordinate Frame and Position Vector 3
1.1.1 Triad 3
1.1.2 Coordinate Frame and Position Vector 4
1.1.3 Vector Definition 10
1.2 Vector Algebra 12
1.2.1 Vector Addition 12
1.2.2 Vector Multiplication 17
1.2.3 Index Notation 26
1.3 Orthogonal Coordinate Frames 31
1.3.1 Orthogonality Condition 31
1.3.2 Unit Vector 34
1.3.3 Direction of Unit Vectors 36
1.4 Differential Geometry 37
1.4.1 Space Curve 38
1.4.2 Surface and Plane 43
1.5 Motion Path Kinematics 46
1.5.1 Vector Function and Derivative 46
1.5.2 Velocity and Acceleration 51
1.5.3 Natural Coordinate Frame 54
1.6 Fields 77
1.6.1 Surface and Orthogonal Mesh 78
1.6.2 Scalar Field and Derivative 85
1.6.3 Vector Field and Derivative 92
Key Symbols 100
Exercises 103
2 Fundamentals of Dynamics 114
2.1 Laws of Motion 114
2.2 Equation of Motion 119
2.2.1 Force and Moment 120
2.2.2 Motion Equation 125
2.3 Special Solutions 131
2.3.1 Force Is a Function of Time, F = F (t) 132
2.3.2 Force Is a Function of Position, F = F(x) 141
2.3.3 Elliptic Functions 148
2.3.4 Force Is a Function of Velocity, F = F (v) 156
2.4 Spatial and Temporal Integrals 165
2.4.1 Spatial Integral: Work and Energy 165
2.4.2 Temporal Integral: Impulse and Momentum 176
2.5 Application of Dynamics 188
2.5.1 Modeling 189
2.5.2 Equations of Motion 197
2.5.3 Dynamic Behavior and Methods of Solution 200
2.5.4 Parameter Adjustment 220
Key Symbols 223
Exercises 226
Part II Geometric Kinematics 241
3 Coordinate Systems 243
3.1 Cartesian Coordinate System 243
3.2 Cylindrical Coordinate System 250
3.3 Spherical Coordinate System 263
3.4 Nonorthogonal Coordinate Frames 269
3.4.1 Reciprocal Base Vectors 269
3.4.2 Reciprocal Coordinate Frame 278
3.4.3 Inner and Outer Vector Product 285
3.4.4 Kinematics in Oblique Coordinate Frames 298
3.5 Curvilinear Coordinate System 300
3.5.1 Principal and Reciprocal Base Vectors 301
3.5.2 Principal-Reciprocal Transformation 311
3.5.3 Curvilinear Geometry 320
3.5.4 Curvilinear Kinematics 325
3.5.5 Kinematics in Curvilinear Coordinates 335
Key Symbols 346
Exercises 347
4 Rotation Kinematics 357
4.1 Rotation About Global Cartesian Axes 357
4.2 Successive Rotations About Global Axes 363
4.3 Global Roll-Pitch-Yaw Angles 370
4.4 Rotation About Local Cartesian Axes 373
4.5 Successive Rotations About Local Axes 376
4.6 Euler Angles 379
4.7 Local Roll-Pitch-Yaw Angles 391
4.8 Local versus Global Rotation 395
4.9 General Rotation 397
4.10 Active and Passive Rotations 409
4.11 Rotation of Rotated Body 411
Key Symbols 415
Exercises 416
5 Orientation Kinematics 422
5.1 Axis-Angle Rotation 422
5.2 Euler Parameters 438
5.3 Quaternion 449
5.4 Spinors and Rotators 457
5.5 Problems in Representing Rotations 459
5.5.1 Rotation Matrix 460
5.5.2 Axis-Angle 461
5.5.3 Euler Angles 462
5.5.4 Quaternion and Euler Parameters 463
5.6 Composition and Decomposition of Rotations 465
5.6.1 Composition of Rotations 466
5.6.2 Decomposition of Rotations 468
Key Symbols 470
Exercises 471
6 Motion Kinematics 477
6.1 Rigid-Body Motion 477
6.2 Homogeneous Transformation 481
6.3 Inverse and Reverse Homogeneous Transformation 494
6.4 Compound Homogeneous Transformation 500
6.5 Screw Motion 517
6.6 Inverse Screw 529
6.7 Compound Screw Transformation 531
6.8 Plücker Line Coordinate 534
6.9 Geometry of Plane and Line 540
6.9.1 Moment 540
6.9.2 Angle and Distance 541
6.9.3 Plane and Line 541
6.10 Screw and Plücker Coordinate 545
Key Symbols 547
Exercises 548
7 Multibody Kinematics 555
7.1 Multibody Connection 555
7.2 Denavit-Hartenberg Rule 563
7.3 Forward Kinematics 584
7.4 Assembling Kinematics 615
7.5 Order-Free Rotation 628
7.6 Order-Free Transformation 635
7.7 Forward Kinematics by Screw 643
7.8 Caster Theory in Vehicles 649
7.9 Inverse Kinematics 662
Key Symbols 684
Exercises 686
Part III Derivative Kinematics 693
8 Velocity Kinematics 695
8.1 Angular Velocity 695
8.2 Time Derivative and Coordinate Frames 718
8.3 Multibody Velocity 727
8.4 Velocity Transformation Matrix 739
8.5 Derivative of a Homogeneous Transformation Matrix 748
8.6 Multibody Velocity 754
8.7 Forward-Velocity Kinematics 757
8.8 Jacobian-Generating Vector 765
8.9 Inverse-Velocity Kinematics 778
Key Symbols 782
Exercises 783
9 Acceleration Kinematics 788
9.1 Angular Acceleration 788
9.2 Second Derivative and Coordinate Frames 810
9.3 Multibody Acceleration 823
9.4 Particle Acceleration 830
9.5 Mixed Double Derivative 858
9.6 Acceleration Transformation Matrix 864
9.7 Forward-Acceleration Kinematics 872
9.8 Inverse-Acceleration Kinematics 874
Key Symbols 877
Exercises 878
10 Constraints 887
10.1 Homogeneity and Isotropy 887
10.2 Describing Space 890
10.2.1 Configuration Space 890
10.2.2 Event Space 896
10.2.3 State Space 900
10.2.4 State-Time Space 908
10.2.5 Kinematic Spaces 910
10.3 Holonomic Constraint 913
10.4 Generalized Coordinate 923
10.5 Constraint Force 932
10.6 Virtual and Actual Works 935
10.7 Nonholonomic Constraint 952
10.7.1 Nonintegrable Constraint 952
10.7.2 Inequality Constraint 962
10.8 Differential Constraint 966
10.9 Generalized Mechanics 970
10.10 Integral of Motion 976
10.11 Methods of Dynamics 996
10.11.1 Lagrange Method 996
10.11.2 Gauss Method 999
10.11.3 Hamilton Method 1002
10.11.4 Gibbs-Appell Method 1009
10.11.5 Kane Method 1013
10.11.6 Nielsen Method 1017
Key Symbols 1021
Exercises 1024
Part IV Dynamics 1031
11 Rigid Body and Mass Moment 1033
11.1 Rigid Body 1033
11.2 Elements of the Mass Moment Matrix 1035
11.3 Transformation of Mass Moment Matrix 1044
11.4 Principal Mass Moments 1058
Key Symbols 1065
Exercises 1066
12 Rigid-Body Dynamics 1072
12.1 Rigid-Body Rotational Cartesian Dynamics 1072
12.2 Rigid-Body Rotational Eulerian Dynamics 1096
12.3 Rigid-Body Translational Dynamics 1101
12.4 Classical Problems of Rigid Bodies 1112
12.4.1 Torque-Free Motion 1112
12.4.2 Spherical Torque-Free Rigid Body 1115
12.4.3 Axisymmetric Torque-Free Rigid Body 1116
12.4.4 Asymmetric Torque-Free Rigid Body 1128
12.4.5 General Motion 1141
12.5 Multibody Dynamics 1157
12.6 Recursive Multibody Dynamics 1170
Key Symbols 1177
Exercises 1179
13 Lagrange Dynamics 1189
13.1 Lagrange Form of Newton Equations 1189
13.2 Lagrange Equation and Potential Force 1203
13.3 Variational Dynamics 1215
13.4 Hamilton Principle 1228
13.5 Lagrange Equation and Constraints 1232
13.6 Conservation Laws 1240
13.6.1 Conservation of Energy 1241
13.6.2 Conservation of Momentum 1243
13.7 Generalized Coordinate System 1244
13.8 Multibody Lagrangian Dynamics 1251
Key Symbols 1262
Exercises 1264
References 1280
A Global Frame Triple Rotation 1287
B Local Frame Triple Rotation 1289
C Principal Central Screw Triple Combination 1291
D Industrial Link DH Matrices 1293
E Trigonometric Formula 1300
Index 1305
Preface xiii
Part I Fundamentals 1
1 Fundamentals of Kinematics 3
1.1 Coordinate Frame and Position Vector 3
1.1.1 Triad 3
1.1.2 Coordinate Frame and Position Vector 4
1.1.3 Vector Definition 10
1.2 Vector Algebra 12
1.2.1 Vector Addition 12
1.2.2 Vector Multiplication 17
1.2.3 Index Notation 26
1.3 Orthogonal Coordinate Frames 31
1.3.1 Orthogonality Condition 31
1.3.2 Unit Vector 34
1.3.3 Direction of Unit Vectors 36
1.4 Differential Geometry 37
1.4.1 Space Curve 38
1.4.2 Surface and Plane 43
1.5 Motion Path Kinematics 46
1.5.1 Vector Function and Derivative 46
1.5.2 Velocity and Acceleration 51
1.5.3 Natural Coordinate Frame 54
1.6 Fields 77
1.6.1 Surface and Orthogonal Mesh 78
1.6.2 Scalar Field and Derivative 85
1.6.3 Vector Field and Derivative 92
Key Symbols 100
Exercises 103
2 Fundamentals of Dynamics 114
2.1 Laws of Motion 114
2.2 Equation of Motion 119
2.2.1 Force and Moment 120
2.2.2 Motion Equation 125
2.3 Special Solutions 131
2.3.1 Force Is a Function of Time, F = F (t) 132
2.3.2 Force Is a Function of Position, F = F(x) 141
2.3.3 Elliptic Functions 148
2.3.4 Force Is a Function of Velocity, F = F (v) 156
2.4 Spatial and Temporal Integrals 165
2.4.1 Spatial Integral: Work and Energy 165
2.4.2 Temporal Integral: Impulse and Momentum 176
2.5 Application of Dynamics 188
2.5.1 Modeling 189
2.5.2 Equations of Motion 197
2.5.3 Dynamic Behavior and Methods of Solution 200
2.5.4 Parameter Adjustment 220
Key Symbols 223
Exercises 226
Part II Geometric Kinematics 241
3 Coordinate Systems 243
3.1 Cartesian Coordinate System 243
3.2 Cylindrical Coordinate System 250
3.3 Spherical Coordinate System 263
3.4 Nonorthogonal Coordinate Frames 269
3.4.1 Reciprocal Base Vectors 269
3.4.2 Reciprocal Coordinate Frame 278
3.4.3 Inner and Outer Vector Product 285
3.4.4 Kinematics in Oblique Coordinate Frames 298
3.5 Curvilinear Coordinate System 300
3.5.1 Principal and Reciprocal Base Vectors 301
3.5.2 Principal-Reciprocal Transformation 311
3.5.3 Curvilinear Geometry 320
3.5.4 Curvilinear Kinematics 325
3.5.5 Kinematics in Curvilinear Coordinates 335
Key Symbols 346
Exercises 347
4 Rotation Kinematics 357
4.1 Rotation About Global Cartesian Axes 357
4.2 Successive Rotations About Global Axes 363
4.3 Global Roll-Pitch-Yaw Angles 370
4.4 Rotation About Local Cartesian Axes 373
4.5 Successive Rotations About Local Axes 376
4.6 Euler Angles 379
4.7 Local Roll-Pitch-Yaw Angles 391
4.8 Local versus Global Rotation 395
4.9 General Rotation 397
4.10 Active and Passive Rotations 409
4.11 Rotation of Rotated Body 411
Key Symbols 415
Exercises 416
5 Orientation Kinematics 422
5.1 Axis-Angle Rotation 422
5.2 Euler Parameters 438
5.3 Quaternion 449
5.4 Spinors and Rotators 457
5.5 Problems in Representing Rotations 459
5.5.1 Rotation Matrix 460
5.5.2 Axis-Angle 461
5.5.3 Euler Angles 462
5.5.4 Quaternion and Euler Parameters 463
5.6 Composition and Decomposition of Rotations 465
5.6.1 Composition of Rotations 466
5.6.2 Decomposition of Rotations 468
Key Symbols 470
Exercises 471
6 Motion Kinematics 477
6.1 Rigid-Body Motion 477
6.2 Homogeneous Transformation 481
6.3 Inverse and Reverse Homogeneous Transformation 494
6.4 Compound Homogeneous Transformation 500
6.5 Screw Motion 517
6.6 Inverse Screw 529
6.7 Compound Screw Transformation 531
6.8 Plücker Line Coordinate 534
6.9 Geometry of Plane and Line 540
6.9.1 Moment 540
6.9.2 Angle and Distance 541
6.9.3 Plane and Line 541
6.10 Screw and Plücker Coordinate 545
Key Symbols 547
Exercises 548
7 Multibody Kinematics 555
7.1 Multibody Connection 555
7.2 Denavit-Hartenberg Rule 563
7.3 Forward Kinematics 584
7.4 Assembling Kinematics 615
7.5 Order-Free Rotation 628
7.6 Order-Free Transformation 635
7.7 Forward Kinematics by Screw 643
7.8 Caster Theory in Vehicles 649
7.9 Inverse Kinematics 662
Key Symbols 684
Exercises 686
Part III Derivative Kinematics 693
8 Velocity Kinematics 695
8.1 Angular Velocity 695
8.2 Time Derivative and Coordinate Frames 718
8.3 Multibody Velocity 727
8.4 Velocity Transformation Matrix 739
8.5 Derivative of a Homogeneous Transformation Matrix 748
8.6 Multibody Velocity 754
8.7 Forward-Velocity Kinematics 757
8.8 Jacobian-Generating Vector 765
8.9 Inverse-Velocity Kinematics 778
Key Symbols 782
Exercises 783
9 Acceleration Kinematics 788
9.1 Angular Acceleration 788
9.2 Second Derivative and Coordinate Frames 810
9.3 Multibody Acceleration 823
9.4 Particle Acceleration 830
9.5 Mixed Double Derivative 858
9.6 Acceleration Transformation Matrix 864
9.7 Forward-Acceleration Kinematics 872
9.8 Inverse-Acceleration Kinematics 874
Key Symbols 877
Exercises 878
10 Constraints 887
10.1 Homogeneity and Isotropy 887
10.2 Describing Space 890
10.2.1 Configuration Space 890
10.2.2 Event Space 896
10.2.3 State Space 900
10.2.4 State-Time Space 908
10.2.5 Kinematic Spaces 910
10.3 Holonomic Constraint 913
10.4 Generalized Coordinate 923
10.5 Constraint Force 932
10.6 Virtual and Actual Works 935
10.7 Nonholonomic Constraint 952
10.7.1 Nonintegrable Constraint 952
10.7.2 Inequality Constraint 962
10.8 Differential Constraint 966
10.9 Generalized Mechanics 970
10.10 Integral of Motion 976
10.11 Methods of Dynamics 996
10.11.1 Lagrange Method 996
10.11.2 Gauss Method 999
10.11.3 Hamilton Method 1002
10.11.4 Gibbs-Appell Method 1009
10.11.5 Kane Method 1013
10.11.6 Nielsen Method 1017
Key Symbols 1021
Exercises 1024
Part IV Dynamics 1031
11 Rigid Body and Mass Moment 1033
11.1 Rigid Body 1033
11.2 Elements of the Mass Moment Matrix 1035
11.3 Transformation of Mass Moment Matrix 1044
11.4 Principal Mass Moments 1058
Key Symbols 1065
Exercises 1066
12 Rigid-Body Dynamics 1072
12.1 Rigid-Body Rotational Cartesian Dynamics 1072
12.2 Rigid-Body Rotational Eulerian Dynamics 1096
12.3 Rigid-Body Translational Dynamics 1101
12.4 Classical Problems of Rigid Bodies 1112
12.4.1 Torque-Free Motion 1112
12.4.2 Spherical Torque-Free Rigid Body 1115
12.4.3 Axisymmetric Torque-Free Rigid Body 1116
12.4.4 Asymmetric Torque-Free Rigid Body 1128
12.4.5 General Motion 1141
12.5 Multibody Dynamics 1157
12.6 Recursive Multibody Dynamics 1170
Key Symbols 1177
Exercises 1179
13 Lagrange Dynamics 1189
13.1 Lagrange Form of Newton Equations 1189
13.2 Lagrange Equation and Potential Force 1203
13.3 Variational Dynamics 1215
13.4 Hamilton Principle 1228
13.5 Lagrange Equation and Constraints 1232
13.6 Conservation Laws 1240
13.6.1 Conservation of Energy 1241
13.6.2 Conservation of Momentum 1243
13.7 Generalized Coordinate System 1244
13.8 Multibody Lagrangian Dynamics 1251
Key Symbols 1262
Exercises 1264
References 1280
A Global Frame Triple Rotation 1287
B Local Frame Triple Rotation 1289
C Principal Central Screw Triple Combination 1291
D Industrial Link DH Matrices 1293
E Trigonometric Formula 1300
Index 1305
Part I Fundamentals 1
1 Fundamentals of Kinematics 3
1.1 Coordinate Frame and Position Vector 3
1.1.1 Triad 3
1.1.2 Coordinate Frame and Position Vector 4
1.1.3 Vector Definition 10
1.2 Vector Algebra 12
1.2.1 Vector Addition 12
1.2.2 Vector Multiplication 17
1.2.3 Index Notation 26
1.3 Orthogonal Coordinate Frames 31
1.3.1 Orthogonality Condition 31
1.3.2 Unit Vector 34
1.3.3 Direction of Unit Vectors 36
1.4 Differential Geometry 37
1.4.1 Space Curve 38
1.4.2 Surface and Plane 43
1.5 Motion Path Kinematics 46
1.5.1 Vector Function and Derivative 46
1.5.2 Velocity and Acceleration 51
1.5.3 Natural Coordinate Frame 54
1.6 Fields 77
1.6.1 Surface and Orthogonal Mesh 78
1.6.2 Scalar Field and Derivative 85
1.6.3 Vector Field and Derivative 92
Key Symbols 100
Exercises 103
2 Fundamentals of Dynamics 114
2.1 Laws of Motion 114
2.2 Equation of Motion 119
2.2.1 Force and Moment 120
2.2.2 Motion Equation 125
2.3 Special Solutions 131
2.3.1 Force Is a Function of Time, F = F (t) 132
2.3.2 Force Is a Function of Position, F = F(x) 141
2.3.3 Elliptic Functions 148
2.3.4 Force Is a Function of Velocity, F = F (v) 156
2.4 Spatial and Temporal Integrals 165
2.4.1 Spatial Integral: Work and Energy 165
2.4.2 Temporal Integral: Impulse and Momentum 176
2.5 Application of Dynamics 188
2.5.1 Modeling 189
2.5.2 Equations of Motion 197
2.5.3 Dynamic Behavior and Methods of Solution 200
2.5.4 Parameter Adjustment 220
Key Symbols 223
Exercises 226
Part II Geometric Kinematics 241
3 Coordinate Systems 243
3.1 Cartesian Coordinate System 243
3.2 Cylindrical Coordinate System 250
3.3 Spherical Coordinate System 263
3.4 Nonorthogonal Coordinate Frames 269
3.4.1 Reciprocal Base Vectors 269
3.4.2 Reciprocal Coordinate Frame 278
3.4.3 Inner and Outer Vector Product 285
3.4.4 Kinematics in Oblique Coordinate Frames 298
3.5 Curvilinear Coordinate System 300
3.5.1 Principal and Reciprocal Base Vectors 301
3.5.2 Principal-Reciprocal Transformation 311
3.5.3 Curvilinear Geometry 320
3.5.4 Curvilinear Kinematics 325
3.5.5 Kinematics in Curvilinear Coordinates 335
Key Symbols 346
Exercises 347
4 Rotation Kinematics 357
4.1 Rotation About Global Cartesian Axes 357
4.2 Successive Rotations About Global Axes 363
4.3 Global Roll-Pitch-Yaw Angles 370
4.4 Rotation About Local Cartesian Axes 373
4.5 Successive Rotations About Local Axes 376
4.6 Euler Angles 379
4.7 Local Roll-Pitch-Yaw Angles 391
4.8 Local versus Global Rotation 395
4.9 General Rotation 397
4.10 Active and Passive Rotations 409
4.11 Rotation of Rotated Body 411
Key Symbols 415
Exercises 416
5 Orientation Kinematics 422
5.1 Axis-Angle Rotation 422
5.2 Euler Parameters 438
5.3 Quaternion 449
5.4 Spinors and Rotators 457
5.5 Problems in Representing Rotations 459
5.5.1 Rotation Matrix 460
5.5.2 Axis-Angle 461
5.5.3 Euler Angles 462
5.5.4 Quaternion and Euler Parameters 463
5.6 Composition and Decomposition of Rotations 465
5.6.1 Composition of Rotations 466
5.6.2 Decomposition of Rotations 468
Key Symbols 470
Exercises 471
6 Motion Kinematics 477
6.1 Rigid-Body Motion 477
6.2 Homogeneous Transformation 481
6.3 Inverse and Reverse Homogeneous Transformation 494
6.4 Compound Homogeneous Transformation 500
6.5 Screw Motion 517
6.6 Inverse Screw 529
6.7 Compound Screw Transformation 531
6.8 Plücker Line Coordinate 534
6.9 Geometry of Plane and Line 540
6.9.1 Moment 540
6.9.2 Angle and Distance 541
6.9.3 Plane and Line 541
6.10 Screw and Plücker Coordinate 545
Key Symbols 547
Exercises 548
7 Multibody Kinematics 555
7.1 Multibody Connection 555
7.2 Denavit-Hartenberg Rule 563
7.3 Forward Kinematics 584
7.4 Assembling Kinematics 615
7.5 Order-Free Rotation 628
7.6 Order-Free Transformation 635
7.7 Forward Kinematics by Screw 643
7.8 Caster Theory in Vehicles 649
7.9 Inverse Kinematics 662
Key Symbols 684
Exercises 686
Part III Derivative Kinematics 693
8 Velocity Kinematics 695
8.1 Angular Velocity 695
8.2 Time Derivative and Coordinate Frames 718
8.3 Multibody Velocity 727
8.4 Velocity Transformation Matrix 739
8.5 Derivative of a Homogeneous Transformation Matrix 748
8.6 Multibody Velocity 754
8.7 Forward-Velocity Kinematics 757
8.8 Jacobian-Generating Vector 765
8.9 Inverse-Velocity Kinematics 778
Key Symbols 782
Exercises 783
9 Acceleration Kinematics 788
9.1 Angular Acceleration 788
9.2 Second Derivative and Coordinate Frames 810
9.3 Multibody Acceleration 823
9.4 Particle Acceleration 830
9.5 Mixed Double Derivative 858
9.6 Acceleration Transformation Matrix 864
9.7 Forward-Acceleration Kinematics 872
9.8 Inverse-Acceleration Kinematics 874
Key Symbols 877
Exercises 878
10 Constraints 887
10.1 Homogeneity and Isotropy 887
10.2 Describing Space 890
10.2.1 Configuration Space 890
10.2.2 Event Space 896
10.2.3 State Space 900
10.2.4 State-Time Space 908
10.2.5 Kinematic Spaces 910
10.3 Holonomic Constraint 913
10.4 Generalized Coordinate 923
10.5 Constraint Force 932
10.6 Virtual and Actual Works 935
10.7 Nonholonomic Constraint 952
10.7.1 Nonintegrable Constraint 952
10.7.2 Inequality Constraint 962
10.8 Differential Constraint 966
10.9 Generalized Mechanics 970
10.10 Integral of Motion 976
10.11 Methods of Dynamics 996
10.11.1 Lagrange Method 996
10.11.2 Gauss Method 999
10.11.3 Hamilton Method 1002
10.11.4 Gibbs-Appell Method 1009
10.11.5 Kane Method 1013
10.11.6 Nielsen Method 1017
Key Symbols 1021
Exercises 1024
Part IV Dynamics 1031
11 Rigid Body and Mass Moment 1033
11.1 Rigid Body 1033
11.2 Elements of the Mass Moment Matrix 1035
11.3 Transformation of Mass Moment Matrix 1044
11.4 Principal Mass Moments 1058
Key Symbols 1065
Exercises 1066
12 Rigid-Body Dynamics 1072
12.1 Rigid-Body Rotational Cartesian Dynamics 1072
12.2 Rigid-Body Rotational Eulerian Dynamics 1096
12.3 Rigid-Body Translational Dynamics 1101
12.4 Classical Problems of Rigid Bodies 1112
12.4.1 Torque-Free Motion 1112
12.4.2 Spherical Torque-Free Rigid Body 1115
12.4.3 Axisymmetric Torque-Free Rigid Body 1116
12.4.4 Asymmetric Torque-Free Rigid Body 1128
12.4.5 General Motion 1141
12.5 Multibody Dynamics 1157
12.6 Recursive Multibody Dynamics 1170
Key Symbols 1177
Exercises 1179
13 Lagrange Dynamics 1189
13.1 Lagrange Form of Newton Equations 1189
13.2 Lagrange Equation and Potential Force 1203
13.3 Variational Dynamics 1215
13.4 Hamilton Principle 1228
13.5 Lagrange Equation and Constraints 1232
13.6 Conservation Laws 1240
13.6.1 Conservation of Energy 1241
13.6.2 Conservation of Momentum 1243
13.7 Generalized Coordinate System 1244
13.8 Multibody Lagrangian Dynamics 1251
Key Symbols 1262
Exercises 1264
References 1280
A Global Frame Triple Rotation 1287
B Local Frame Triple Rotation 1289
C Principal Central Screw Triple Combination 1291
D Industrial Link DH Matrices 1293
E Trigonometric Formula 1300
Index 1305