Advanced Magnetic and Optical Materials
Herausgeber: Tiwari, Ashutosh; Swart, Hendrik; Kumar, Vijay; Iyer, Parameswar K
Advanced Magnetic and Optical Materials
Herausgeber: Tiwari, Ashutosh; Swart, Hendrik; Kumar, Vijay; Iyer, Parameswar K
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Advanced Magnetic and OpticalMaterials offers detailed up-to-date chapters on the functional optical and magnetic materials, engineering of quantum structures, high-tech magnets, characterization and new applications. It brings together innovative methodologies and strategies adopted in the research and development of the subject and all the contributors are established specialists in the research area. The 14 chapters are organized in two parts: Part 1: Magnetic Materials * Magnetic Heterostructures and superconducting order * Magnetic Antiresonance in nanocomposites * Magnetic bioactive…mehr
- Materials for Solid State Lighting and Displays197,99 €
- Daniel Lu / C.P. Wong (ed.)Materials for Advanced Packaging126,99 €
- John W. EvansA Guide to Lead-Free Solders122,99 €
- Myeongkyu LeeOptics for Materials Scientists191,99 €
- Naveen K NishchalOptical Cryptosystems212,99 €
- Kwang J. Kim / Satoshi Tadokoro (eds.)Electroactive Polymers for Robotic Applications110,99 €
- Avinash BalakrishnanNanostructured Electrochromic Materials for Smart Switchable Windows88,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 560
- Erscheinungstermin: 21. November 2016
- Englisch
- Abmessung: 231mm x 155mm x 33mm
- Gewicht: 839g
- ISBN-13: 9781119241911
- ISBN-10: 111924191X
- Artikelnr.: 46968677
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 560
- Erscheinungstermin: 21. November 2016
- Englisch
- Abmessung: 231mm x 155mm x 33mm
- Gewicht: 839g
- ISBN-13: 9781119241911
- ISBN-10: 111924191X
- Artikelnr.: 46968677
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Part 1 Magnetic Materials
1 Superconducting Order in Magnetic Heterostructures 3
Sol H. Jacobsen, Jabir Ali Ouassou and Jacob Linder
1.1 Introduction 3
1.2 Fundamental Physics 6
1.3 Theoretical Framework 15
1.4 Experimental Status 23
1.5 Novel Predictions 33
1.6 Outlook 37
Acknowledgements 38
References 39
2 Magnetic Antiresonance in Nanocomposite Materials 47
Anatoly B. Rinkevich, Dmitry V. Perov and Olga V. Nemytova
2.1 Introduction: Phenomenon of Magnetic Antiresonance 47
2.2 Magnetic Antiresonance Review 49
2.3 Phase Composition and Structure of Nanocomposites Based on Artificial
Opals 54
2.4 Experimental Methods of the Antiresonance Investigation 56
2.5 Nanocomposites Where the Antiresonance Is Observed in 60
2.6 Conditions of Magnetic Antiresonance Observation in Non-conducting
Nanocomposite Plate 63
2.7 Magnetic Field Dependence of Transmission and Reflection Coefficients
70
2.8 Frequency Dependence of Resonance Amplitude 72
2.9 Magnetic Resonance and Antiresonance upon Parallel and Perpendicular
Orientation of Microwave and a Permanent Magnetic Field 74
2.10 Conclusion 76
Acknowledgement 77
References 77
3 Magnetic Bioactive Glass Ceramics for Bone Healing and Hyperthermic
Treatment of Solid Tumors 81
Andrea Cochis, Marta Miola, Oana Bretcanu, Lia Rimondini and Enrica Vernè
3.1 Bone and Cancer: A Hazardous Attraction 82
3.2 Hyperthermia Therapy for Cancer Treatment 86
3.3 Evidences of Hyperthermia Efficacy 94
3.4 Magnetic Composites for Hyperthermia Treatment 95
3.5 Conclusions 103
References 103
4 Magnetic Iron Oxide Nanoparticles: Advances on Controlled Synthesis,
Multifunctionalization, and Biomedical Applications 113
Dung The Nguyen and Kyo-Seon Kim
4.1 Introduction 114
4.2 Controlled Synthesis of Fe3O4 Nanoparticles 115
4.3 Surface Modification of Fe3O4 Nanoparticles for Biomedical Applications
122
4.4 Magnetism and Magnetically Induced Heating of Fe3O4 Nanoparticles 126
4.5 Applications of Fe3O4 Nanoparticles to Magnetic Hyperthermia 130
4.6 Applications of Fe3O4 Nanoparticles to Hyperthermia-based Controlled
Drug Delivery 132
4.7 Conclusions 134
Acknowledgment 135
References 135
5 Magnetic Nanomaterial-based Anticancer Therapy 141
Catalano Enrico
5.1 Introduction 142
5.2 Magnetic Nanomaterials 144
5.3 Biomedical Applications of Magnetic Nanomaterials 145
5.4 Magnetic Nanomaterials for Cancer Therapies 146
5.5 Relevance of Nanotechnology to Cancer Therapy 147
5.6 Cancer Therapy with Magnetic Nanoparticle Drug Delivery 148
5.7 Drug Delivery in the Cancer Therapy 149
5.8 Magnetic Hyperthermia 151
5.9 Role of Theranostic Nanomedicine in Cancer Treatment 154
5.10 Magnetic Nanomaterials for Chemotherapy 155
5.11 Magnetic Nanomaterials as Carrier for Cancer Gene Therapeutics 156
5.12 Conclusions 156
5.13 Future Prospects 158
References 159
6 Theoretical Study of Strained Carbon-based Nanobelts: Structural,
Energetic, Electronic, and Magnetic properties of [n]Cyclacenes 165
E. San-Fabián, A. Pérez-Guardiola, M. Moral, A. J. Pérez-Jiménez and J. C.
Sancho-García
6.1 Introduction 166
6.2 Computational Strategy and Associated Details 168
6.3 Results and Discussion 171
6.4 Conclusions 181
Acknowledgments 182
References 182
7 Room Temperature Molecular Magnets: Modeling and Applications 185
Mihai A. Gîr¿u and Corneliu I. Oprea
7.1 Introduction 186
7.2 Experimental Background 187
7.3 Ideal Structure and Sources of Structural Disorder 193
7.4 Exchange Coupling Constants and Ferrimagnetic Ordering 200
7.5 Magnetic Anisotropy 224
7.6 Applications of V[TCNE]x 233
7.7 Conclusions 241
Acknowledgments 243
References 243
8 Advances and Future of White LED Phosphors for Solid-State Lighting 251
Xianwen Zhang and Xin Zhang
8.1 Light Generation Mechanisms and History of LEDs Chips 251
8.2 Fabrication of WLEDs 254
8.3 Evaluation Criteria of WLEDs 257
8.4 Phosphors for WLEDs 261
8.5 Conclusions 271
References 272
Part 2 Optical Materials 277
9 Design of Luminescent Materials with "Turn-On/Off" Response for Anions
and Cations 279
Serkan Erdemir and Sait Malkondu
9.1 Introduction 280
9.2 Luminescent Materials for Sensing of Cations 283
9.3 Luminescent Materials for Sensing of Anions 302
9.4 Conclusion 307
Acknowledgments 308
References 308
10 Recent Advancements in Luminescent Materials and Their Potential
Applications 317
Devender Singh, Vijeta Tanwar, Shri Bhagwan and Ishwar Singh
10.1 Phosphor 317
10.2 An Overview on the Past Research on Phosphor 318
10.3 Luminescence 319
10.4 Mechanism of Emission of Light in Phosphor Particles 320
10.5 How Luminescence Occur in Luminescent Materials? 321
10.6 Luminescence Is Broadly Classified within the Following Categories 326
10.7 Inorganic phosphors 332
10.8 Organic Phosphors 332
10.9 Optical Properties of Inorganic Phosphors 333
10.10 Role of Activator and Coactivator 333
10.11 Role of Rare Earth as Activator and Coactivator in Phosphors 334
10.12 There Are Different Classes of Phosphors, Which May Be Classified
According to the Host Lattice 342
10.13 Applications of Phosphors 345
10.14 Future Prospects of Phosphors 348
10.15 Conclusions 349
References 349
11 Strongly Confined PbS Quantum Dots: Emission Limiting, Photonic Doping,
and Magneto-optical Effects 353
P. Barik, A. K. Singh, E. V. García-Ramírez, J. A. Reyes-Esqueda, J. S.
Wang, H. Xi and B. Ullrich
11.1 Introduction 354
11.2 QDs Used and Sample Preparation 356
11.3 Basic Properties of PbS Quantum Dots 356
11.4 Measuring Techniques and Equipment Employed 358
11.5 Photoluminescence Limiting of Colloidal PbS Quantum Dots 361
11.6 Photonic Doping of Soft Matter 364
11.7 Magneto-optical Properties 370
11.8 Conclusions 380
Acknowledgment 380
References 380
12 Microstructure Characterization of Some Quantum Dots Synthesized by
Mechanical Alloying 385
S. Sain and S.K. Pradhan
12.1 Introduction 386
12.2 Brief History of QDs 387
12.3 Theory of QDs 388
12.4 Different Processes of Synthesis of QDs 391
12.5 Structure of QDs 392
12.6 Applications of QDs 393
12.7 Mechanical Alloying 395
12.8 The Rietveld Refinement Method 398
12.9 Some Previous Work on Metal Chalcogenide QDs Prepared by Mechanical
Alloying from Other Groups 402
12.11 Conclusions 419
References 419
13 Advances in Functional Luminescent Materials and Phosphors 425
Radhaballabh Debnath
13.1 Introduction 425
13.2 Some Theoretical Aspects of the Processes of Light Absorption/Emission
by Matter 427
13.3 Sensitization/Energy Transfer Phenomenon in Luminescence Process 433
13.4 Functional Phosphors 435
13.5 Classifications of Functional Phosphors 438
13.6 Solid-state Luminescent Materials for Laser 460
Acknowledgments 467
References 467
14 Development in Organic Light-emitting Materials and Their Potential
Applications 473
Devender Singh, Shri Bhagwan, Raman Kumar Saini, Vandna Nishal and Ishwar
Singh
14.1 Luminescence in Organic Molecules 473
14.2 Types of Luminescence 475
14.3 Mechanism of Luminescence 479
14.4 Organic Compounds as Luminescent Material 480
14.5 Possible Transitions in Organic Molecules 494
14.6 OLED's Structure and Composition 495
14.7 Basic Principle of OLEDs 502
14.8 Working of OLEDs 502
14.9 Light Emission in OLEDs 504
14.10 Types of OLED Displays 505
14.11 Techniques of Fabrication of OLEDs Devices 506
14.12 Advantages of OLEDs 507
14.13 Potential Applications of OLEDs 511
14.14 Future Prospects of OLEDs 512
14.15 Conclusions 512
References 513
Part 1 Magnetic Materials
1 Superconducting Order in Magnetic Heterostructures 3
Sol H. Jacobsen, Jabir Ali Ouassou and Jacob Linder
1.1 Introduction 3
1.2 Fundamental Physics 6
1.3 Theoretical Framework 15
1.4 Experimental Status 23
1.5 Novel Predictions 33
1.6 Outlook 37
Acknowledgements 38
References 39
2 Magnetic Antiresonance in Nanocomposite Materials 47
Anatoly B. Rinkevich, Dmitry V. Perov and Olga V. Nemytova
2.1 Introduction: Phenomenon of Magnetic Antiresonance 47
2.2 Magnetic Antiresonance Review 49
2.3 Phase Composition and Structure of Nanocomposites Based on Artificial
Opals 54
2.4 Experimental Methods of the Antiresonance Investigation 56
2.5 Nanocomposites Where the Antiresonance Is Observed in 60
2.6 Conditions of Magnetic Antiresonance Observation in Non-conducting
Nanocomposite Plate 63
2.7 Magnetic Field Dependence of Transmission and Reflection Coefficients
70
2.8 Frequency Dependence of Resonance Amplitude 72
2.9 Magnetic Resonance and Antiresonance upon Parallel and Perpendicular
Orientation of Microwave and a Permanent Magnetic Field 74
2.10 Conclusion 76
Acknowledgement 77
References 77
3 Magnetic Bioactive Glass Ceramics for Bone Healing and Hyperthermic
Treatment of Solid Tumors 81
Andrea Cochis, Marta Miola, Oana Bretcanu, Lia Rimondini and Enrica Vernè
3.1 Bone and Cancer: A Hazardous Attraction 82
3.2 Hyperthermia Therapy for Cancer Treatment 86
3.3 Evidences of Hyperthermia Efficacy 94
3.4 Magnetic Composites for Hyperthermia Treatment 95
3.5 Conclusions 103
References 103
4 Magnetic Iron Oxide Nanoparticles: Advances on Controlled Synthesis,
Multifunctionalization, and Biomedical Applications 113
Dung The Nguyen and Kyo-Seon Kim
4.1 Introduction 114
4.2 Controlled Synthesis of Fe3O4 Nanoparticles 115
4.3 Surface Modification of Fe3O4 Nanoparticles for Biomedical Applications
122
4.4 Magnetism and Magnetically Induced Heating of Fe3O4 Nanoparticles 126
4.5 Applications of Fe3O4 Nanoparticles to Magnetic Hyperthermia 130
4.6 Applications of Fe3O4 Nanoparticles to Hyperthermia-based Controlled
Drug Delivery 132
4.7 Conclusions 134
Acknowledgment 135
References 135
5 Magnetic Nanomaterial-based Anticancer Therapy 141
Catalano Enrico
5.1 Introduction 142
5.2 Magnetic Nanomaterials 144
5.3 Biomedical Applications of Magnetic Nanomaterials 145
5.4 Magnetic Nanomaterials for Cancer Therapies 146
5.5 Relevance of Nanotechnology to Cancer Therapy 147
5.6 Cancer Therapy with Magnetic Nanoparticle Drug Delivery 148
5.7 Drug Delivery in the Cancer Therapy 149
5.8 Magnetic Hyperthermia 151
5.9 Role of Theranostic Nanomedicine in Cancer Treatment 154
5.10 Magnetic Nanomaterials for Chemotherapy 155
5.11 Magnetic Nanomaterials as Carrier for Cancer Gene Therapeutics 156
5.12 Conclusions 156
5.13 Future Prospects 158
References 159
6 Theoretical Study of Strained Carbon-based Nanobelts: Structural,
Energetic, Electronic, and Magnetic properties of [n]Cyclacenes 165
E. San-Fabián, A. Pérez-Guardiola, M. Moral, A. J. Pérez-Jiménez and J. C.
Sancho-García
6.1 Introduction 166
6.2 Computational Strategy and Associated Details 168
6.3 Results and Discussion 171
6.4 Conclusions 181
Acknowledgments 182
References 182
7 Room Temperature Molecular Magnets: Modeling and Applications 185
Mihai A. Gîr¿u and Corneliu I. Oprea
7.1 Introduction 186
7.2 Experimental Background 187
7.3 Ideal Structure and Sources of Structural Disorder 193
7.4 Exchange Coupling Constants and Ferrimagnetic Ordering 200
7.5 Magnetic Anisotropy 224
7.6 Applications of V[TCNE]x 233
7.7 Conclusions 241
Acknowledgments 243
References 243
8 Advances and Future of White LED Phosphors for Solid-State Lighting 251
Xianwen Zhang and Xin Zhang
8.1 Light Generation Mechanisms and History of LEDs Chips 251
8.2 Fabrication of WLEDs 254
8.3 Evaluation Criteria of WLEDs 257
8.4 Phosphors for WLEDs 261
8.5 Conclusions 271
References 272
Part 2 Optical Materials 277
9 Design of Luminescent Materials with "Turn-On/Off" Response for Anions
and Cations 279
Serkan Erdemir and Sait Malkondu
9.1 Introduction 280
9.2 Luminescent Materials for Sensing of Cations 283
9.3 Luminescent Materials for Sensing of Anions 302
9.4 Conclusion 307
Acknowledgments 308
References 308
10 Recent Advancements in Luminescent Materials and Their Potential
Applications 317
Devender Singh, Vijeta Tanwar, Shri Bhagwan and Ishwar Singh
10.1 Phosphor 317
10.2 An Overview on the Past Research on Phosphor 318
10.3 Luminescence 319
10.4 Mechanism of Emission of Light in Phosphor Particles 320
10.5 How Luminescence Occur in Luminescent Materials? 321
10.6 Luminescence Is Broadly Classified within the Following Categories 326
10.7 Inorganic phosphors 332
10.8 Organic Phosphors 332
10.9 Optical Properties of Inorganic Phosphors 333
10.10 Role of Activator and Coactivator 333
10.11 Role of Rare Earth as Activator and Coactivator in Phosphors 334
10.12 There Are Different Classes of Phosphors, Which May Be Classified
According to the Host Lattice 342
10.13 Applications of Phosphors 345
10.14 Future Prospects of Phosphors 348
10.15 Conclusions 349
References 349
11 Strongly Confined PbS Quantum Dots: Emission Limiting, Photonic Doping,
and Magneto-optical Effects 353
P. Barik, A. K. Singh, E. V. García-Ramírez, J. A. Reyes-Esqueda, J. S.
Wang, H. Xi and B. Ullrich
11.1 Introduction 354
11.2 QDs Used and Sample Preparation 356
11.3 Basic Properties of PbS Quantum Dots 356
11.4 Measuring Techniques and Equipment Employed 358
11.5 Photoluminescence Limiting of Colloidal PbS Quantum Dots 361
11.6 Photonic Doping of Soft Matter 364
11.7 Magneto-optical Properties 370
11.8 Conclusions 380
Acknowledgment 380
References 380
12 Microstructure Characterization of Some Quantum Dots Synthesized by
Mechanical Alloying 385
S. Sain and S.K. Pradhan
12.1 Introduction 386
12.2 Brief History of QDs 387
12.3 Theory of QDs 388
12.4 Different Processes of Synthesis of QDs 391
12.5 Structure of QDs 392
12.6 Applications of QDs 393
12.7 Mechanical Alloying 395
12.8 The Rietveld Refinement Method 398
12.9 Some Previous Work on Metal Chalcogenide QDs Prepared by Mechanical
Alloying from Other Groups 402
12.11 Conclusions 419
References 419
13 Advances in Functional Luminescent Materials and Phosphors 425
Radhaballabh Debnath
13.1 Introduction 425
13.2 Some Theoretical Aspects of the Processes of Light Absorption/Emission
by Matter 427
13.3 Sensitization/Energy Transfer Phenomenon in Luminescence Process 433
13.4 Functional Phosphors 435
13.5 Classifications of Functional Phosphors 438
13.6 Solid-state Luminescent Materials for Laser 460
Acknowledgments 467
References 467
14 Development in Organic Light-emitting Materials and Their Potential
Applications 473
Devender Singh, Shri Bhagwan, Raman Kumar Saini, Vandna Nishal and Ishwar
Singh
14.1 Luminescence in Organic Molecules 473
14.2 Types of Luminescence 475
14.3 Mechanism of Luminescence 479
14.4 Organic Compounds as Luminescent Material 480
14.5 Possible Transitions in Organic Molecules 494
14.6 OLED's Structure and Composition 495
14.7 Basic Principle of OLEDs 502
14.8 Working of OLEDs 502
14.9 Light Emission in OLEDs 504
14.10 Types of OLED Displays 505
14.11 Techniques of Fabrication of OLEDs Devices 506
14.12 Advantages of OLEDs 507
14.13 Potential Applications of OLEDs 511
14.14 Future Prospects of OLEDs 512
14.15 Conclusions 512
References 513