158,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
79 °P sammeln
  • Gebundenes Buch

This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically…mehr

Produktbeschreibung
This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods.
Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples.
This book includes the multicanonical algorithm, dynamic weighting, dynamically weighted importance sampling, the Wang-Landau algorithm, equal energy sampler, stochastic approximation Monte Carlo, adaptive MCMC algorithms, conjugate gradient Monte Carlo, adaptive direction sampling, the sampling Metropolis-Hasting algorithm and the multiplica sampler.
Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics.

Key Features:
Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems.
A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants.
Up-to-date accounts of recent developments of the Gibbs sampler.
Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals.
Accompanied by a supporting website featuring datasets used in the book, along with codes used for some simulation examples.

This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Faming Liang, Associate Professor, Department of Statistics, Texas A&M University. Chuanhai Liu, Professor, Department of Statistics, Purdue University. Raymond J. Carroll, Distinguished Professor, Department of Statistics, Texas A&M University.