48,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
24 °P sammeln
  • Broschiertes Buch

A study has been conducted at Hong Kong Polytechnic University to develop a procedure to better predict long-term performance of asphalt concrete pavements. To achieve this end, complicated finite element techniques are employed and parametric studies are performed. The fatigue destructive mechanics (fracture mechanics and damage mechanics) are used to develop a 3D Finite element model that can be applied to characterize the nonlinear properties of the asphalt concrete materials. A set of materials tests is preformed to evaluate various bituminous wearing course materials by using Universal…mehr

Produktbeschreibung
A study has been conducted at Hong Kong Polytechnic University to develop a procedure to better predict long-term performance of asphalt concrete pavements. To achieve this end, complicated finite element techniques are employed and parametric studies are performed. The fatigue destructive mechanics (fracture mechanics and damage mechanics) are used to develop a 3D Finite element model that can be applied to characterize the nonlinear properties of the asphalt concrete materials. A set of materials tests is preformed to evaluate various bituminous wearing course materials by using Universal Servo Pneumatic Testing System in Hong Kong Road Research Laboratory such as indirect tensile modulus, dynamic creep, indirect tensile fatigue and wheel tracking. The materials for this study comprise conventional asphalt concrete wearing course (ACWC) and stone mastic asphalt (SMA) with a virgin 60/70 bitumen and different modified bitumen (Polypropylene, Crumb rubber, Cellulose fiber, Asbestos fiber and Gilsonite).
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr Zhi SUOSchool of Civil & Transportation EngineeringBeijing University of Civil Engineering and ArchitectureAddress: No.1 Zhanlan Road, Xicheng DistrictBeijing, China