Advanced State Space Methods for Neural and Clinical Data
Herausgeber: Chen, Zhe
Advanced State Space Methods for Neural and Clinical Data
Herausgeber: Chen, Zhe
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An authoritative and in-depth treatment of state space methods, with a range of applications in neural and clinical data.
Andere Kunden interessierten sich auch für
- William W. LyttonFrom Computer to Brain73,99 €
- Christopher W. Tyler (Hrsg.)Computer Vision163,99 €
- Robert Hecht-Nielsen / Thomas McKenna (eds.)Computational Models for Neuroscience189,99 €
- Plasticity in Sensory Systems149,99 €
- Moo K ChungBrain Network Analysis100,99 €
- Dynamic Faces12,99 €
- Farzin AsadiState-Space Control Systems53,49 €
-
-
-
An authoritative and in-depth treatment of state space methods, with a range of applications in neural and clinical data.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 394
- Erscheinungstermin: 28. November 2015
- Englisch
- Abmessung: 253mm x 181mm x 23mm
- Gewicht: 934g
- ISBN-13: 9781107079199
- ISBN-10: 1107079195
- Artikelnr.: 42362146
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Cambridge University Press
- Seitenzahl: 394
- Erscheinungstermin: 28. November 2015
- Englisch
- Abmessung: 253mm x 181mm x 23mm
- Gewicht: 934g
- ISBN-13: 9781107079199
- ISBN-10: 1107079195
- Artikelnr.: 42362146
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1. Introduction Z. Chen; 2. Inference and learning in latent Markov models
D. Barber and S. Chiappa; Part I. State Space Methods for Neural Data: 3.
State space methods for MEG source reconstruction M. Fukushima, O.
Yamashita and M. Sato; 4. Autoregressive modeling of fMRI time series:
state space approaches and the general linear model A. Galka, M.
Siniatchkin, U. Stephani, K. Groening, S. Wolff, J. Bosch-Bayard and T.
Ozaki; 5. State space models and their spectral decomposition in dynamic
causal modeling R. Moran; 6. Estimating state and parameters in state space
models of spike trains J. H. Macke, L. Buesing and M. Sahani; 7. Bayesian
inference for latent stepping and ramping models of spike train data K. W.
Latimer, A. C. Huk and J. W. Pillow; 8. Probabilistic approaches to uncover
rat hippocampal population codes Z. Chen, F. Kloosterman and M. A. Wilson;
9. Neural decoding in motor cortex using state space models with hidden
states W. Wu and S. Liu; 10. State-space modeling for analysis of behavior
in learning experiments A. C. Smith; Part II. State Space Methods for
Clinical Data: 11. Bayesian nonparametric learning of switching dynamics in
cohort physiological time series: application in critical care patient
monitoring L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G.
Mark; 12. Identifying outcome-discriminative dynamics in multivariate
physiological cohort time series S. Nemati and R. P. Adams; 13. A dynamic
point process framework for assessing heartbeat dynamics and cardiovascular
functions Z. Chen and R. Barbieri; 14. Real-time segmentation and tracking
of brain metabolic state in ICU EEG recordings of burst suppression M. B.
Westover, S. Ching, M. M. Shafi, S. S. Cash and E. N. Brown; 15. Signal
quality indices for state-space electrophysiological signal processing and
vice versa J. Oster and G. D. Clifford.
D. Barber and S. Chiappa; Part I. State Space Methods for Neural Data: 3.
State space methods for MEG source reconstruction M. Fukushima, O.
Yamashita and M. Sato; 4. Autoregressive modeling of fMRI time series:
state space approaches and the general linear model A. Galka, M.
Siniatchkin, U. Stephani, K. Groening, S. Wolff, J. Bosch-Bayard and T.
Ozaki; 5. State space models and their spectral decomposition in dynamic
causal modeling R. Moran; 6. Estimating state and parameters in state space
models of spike trains J. H. Macke, L. Buesing and M. Sahani; 7. Bayesian
inference for latent stepping and ramping models of spike train data K. W.
Latimer, A. C. Huk and J. W. Pillow; 8. Probabilistic approaches to uncover
rat hippocampal population codes Z. Chen, F. Kloosterman and M. A. Wilson;
9. Neural decoding in motor cortex using state space models with hidden
states W. Wu and S. Liu; 10. State-space modeling for analysis of behavior
in learning experiments A. C. Smith; Part II. State Space Methods for
Clinical Data: 11. Bayesian nonparametric learning of switching dynamics in
cohort physiological time series: application in critical care patient
monitoring L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G.
Mark; 12. Identifying outcome-discriminative dynamics in multivariate
physiological cohort time series S. Nemati and R. P. Adams; 13. A dynamic
point process framework for assessing heartbeat dynamics and cardiovascular
functions Z. Chen and R. Barbieri; 14. Real-time segmentation and tracking
of brain metabolic state in ICU EEG recordings of burst suppression M. B.
Westover, S. Ching, M. M. Shafi, S. S. Cash and E. N. Brown; 15. Signal
quality indices for state-space electrophysiological signal processing and
vice versa J. Oster and G. D. Clifford.
1. Introduction Z. Chen; 2. Inference and learning in latent Markov models
D. Barber and S. Chiappa; Part I. State Space Methods for Neural Data: 3.
State space methods for MEG source reconstruction M. Fukushima, O.
Yamashita and M. Sato; 4. Autoregressive modeling of fMRI time series:
state space approaches and the general linear model A. Galka, M.
Siniatchkin, U. Stephani, K. Groening, S. Wolff, J. Bosch-Bayard and T.
Ozaki; 5. State space models and their spectral decomposition in dynamic
causal modeling R. Moran; 6. Estimating state and parameters in state space
models of spike trains J. H. Macke, L. Buesing and M. Sahani; 7. Bayesian
inference for latent stepping and ramping models of spike train data K. W.
Latimer, A. C. Huk and J. W. Pillow; 8. Probabilistic approaches to uncover
rat hippocampal population codes Z. Chen, F. Kloosterman and M. A. Wilson;
9. Neural decoding in motor cortex using state space models with hidden
states W. Wu and S. Liu; 10. State-space modeling for analysis of behavior
in learning experiments A. C. Smith; Part II. State Space Methods for
Clinical Data: 11. Bayesian nonparametric learning of switching dynamics in
cohort physiological time series: application in critical care patient
monitoring L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G.
Mark; 12. Identifying outcome-discriminative dynamics in multivariate
physiological cohort time series S. Nemati and R. P. Adams; 13. A dynamic
point process framework for assessing heartbeat dynamics and cardiovascular
functions Z. Chen and R. Barbieri; 14. Real-time segmentation and tracking
of brain metabolic state in ICU EEG recordings of burst suppression M. B.
Westover, S. Ching, M. M. Shafi, S. S. Cash and E. N. Brown; 15. Signal
quality indices for state-space electrophysiological signal processing and
vice versa J. Oster and G. D. Clifford.
D. Barber and S. Chiappa; Part I. State Space Methods for Neural Data: 3.
State space methods for MEG source reconstruction M. Fukushima, O.
Yamashita and M. Sato; 4. Autoregressive modeling of fMRI time series:
state space approaches and the general linear model A. Galka, M.
Siniatchkin, U. Stephani, K. Groening, S. Wolff, J. Bosch-Bayard and T.
Ozaki; 5. State space models and their spectral decomposition in dynamic
causal modeling R. Moran; 6. Estimating state and parameters in state space
models of spike trains J. H. Macke, L. Buesing and M. Sahani; 7. Bayesian
inference for latent stepping and ramping models of spike train data K. W.
Latimer, A. C. Huk and J. W. Pillow; 8. Probabilistic approaches to uncover
rat hippocampal population codes Z. Chen, F. Kloosterman and M. A. Wilson;
9. Neural decoding in motor cortex using state space models with hidden
states W. Wu and S. Liu; 10. State-space modeling for analysis of behavior
in learning experiments A. C. Smith; Part II. State Space Methods for
Clinical Data: 11. Bayesian nonparametric learning of switching dynamics in
cohort physiological time series: application in critical care patient
monitoring L. H. Lehman, M. J. Johnson, S. Nemati, R. P. Adams and R. G.
Mark; 12. Identifying outcome-discriminative dynamics in multivariate
physiological cohort time series S. Nemati and R. P. Adams; 13. A dynamic
point process framework for assessing heartbeat dynamics and cardiovascular
functions Z. Chen and R. Barbieri; 14. Real-time segmentation and tracking
of brain metabolic state in ICU EEG recordings of burst suppression M. B.
Westover, S. Ching, M. M. Shafi, S. S. Cash and E. N. Brown; 15. Signal
quality indices for state-space electrophysiological signal processing and
vice versa J. Oster and G. D. Clifford.