276,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
138 °P sammeln
  • Gebundenes Buch

The book outlines first the importance of Extra Cellular Matrix (ECM), which is a natural surface for most of cells. In the following chapters the influence of biological, chemical, mechanical, and physical properties of surfaces in micro and nano-scale on stem cell behavior are discussed including the mechanotransduction. Biomimetic and bioinspired approaches are highlighted for developing microenvironment of several tissues, and surface engineering applications are discussed in tissue engineering, regenerative medicine and different type of biomaterials in various chapters of the book. This…mehr

Produktbeschreibung
The book outlines first the importance of Extra Cellular Matrix (ECM), which is a natural surface for most of cells. In the following chapters the influence of biological, chemical, mechanical, and physical properties of surfaces in micro and nano-scale on stem cell behavior are discussed including the mechanotransduction. Biomimetic and bioinspired approaches are highlighted for developing microenvironment of several tissues, and surface engineering applications are discussed in tissue engineering, regenerative medicine and different type of biomaterials in various chapters of the book. This book brings together innovative methodologies and strategies adopted in the research and development of Advanced Surfaces in Stem Cell Research . Well-known worldwide researchers deliberate subjects including: * Extracellular matrix proteins for stem cell fate * The superficial mechanical and physical properties of matrix microenvironment as stem cell fate regulator * Effects of mechanotransduction on stem cell behavior * Modulation of stem cells behavior through bioactive surfaces * Influence of controlled micro and nanoengineered surfaces on stem cell fate * Nanostructured polymeric surfaces for stem cells * Laser surface modification techniques and stem cells applications * Plasma polymer deposition: a versatile tool for stem cell research * Application of bioreactor concept and modeling techniques in bone regeneration and augmentation treatments * Substrates and surfaces for control of pluripotent stem cell fate and function * Application of biopolymer-based, surface modified devices in transplant medicine and tissue engineering * Silk as a natural biopolymer for tissue engineering
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Ashutosh Tiwari is Secretary General, International Association of Advanced Materials; Chairman and Managing Director of Tekidag AB (Innotech); Associate Professor and Group Leader, Smart Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre, IFM-Linköping University; Editor-in-Chief, Advanced Materials Letters; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden. He has more than 100 peer-reviewed primary research publications in the field of materials science and nanotechnology and has edited/authored more than 35 books on advanced materials and technology Bora Garipcan teaches at Boðaziçi University, Turkey. Lokman Uzun is an Associate Professor at the Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey where he also received his PhD in 2008. He is the author of more than 75 articles in peer-review journals and is the Assistant Editor of Hacettepe's Journal of Biology and Chemistry. He recently took up a fellowship with the Biosensors and Bioelectronics Centre, Linköping University, Sweden. His research interest is mainly in materials science, surface modification, affinity interaction, polymer science, especially molecularly imprinted polymers and their applications in biosensors, bioseparation, food safety, and the environmental sciences.