259,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

This volume focuses on the fundamentals of additive manufacturing and its components, explains why and what we do, outlines what is crucial to the user, offers details on important applications such as in the aerospace, automotive, or medical areas, and the difficult certification process. This book explores the advancements in additive manufacturing which produces solid, free-form, nearly net-shaped objects. This refers to items that are easy to use, out-of-the-box, and not bound by the design constraints of modern manufacturing techniques. AM expands the definition of 3D printing to…mehr

Produktbeschreibung
This volume focuses on the fundamentals of additive manufacturing and its components, explains why and what we do, outlines what is crucial to the user, offers details on important applications such as in the aerospace, automotive, or medical areas, and the difficult certification process. This book explores the advancements in additive manufacturing which produces solid, free-form, nearly net-shaped objects. This refers to items that are easy to use, out-of-the-box, and not bound by the design constraints of modern manufacturing techniques. AM expands the definition of 3D printing to encompass a variety of procedures that begin with a three-dimensional computer model, incorporate an AM production procedure, and result in a useful product. The AM process can be confusing due to the rapid rise of competing techniques for fabricating 3D parts. This volume provides a thorough review of the basic components and procedures involved in additive manufacturing. It outlines a road map for where to begin, what to study, how everything goes together, and how AM might enable ideas outside traditional processing to realize those ideas in AM. Furthermore, this book investigates the benefits of AM including affordable access to 3D solid modeling software. With this software, learning is achieved without having to invest in costly industrial equipment. AM encompasses a variety of techniques, including those that use high-intensity beams to fuse powder or wire, and hybrid techniques that combine additive and subtractive manufacturing techniques. AM-related processes have developed at breakneck speed, giving rise to a deluge of acronyms and terminology, not to mention the emergence, acquisition, and demise of new businesses. By combining ideas and aspirations, better methods will be revealed that result in useful products that will serve and contribute to a lasting future. Although expensive commercial additive manufacturing equipment can cost hundreds of thousands to millions of dollars, a lack of access to equipment does not preclude the study of the technology. 3D printing services will undoubtedly become more reasonable for small- and medium-sized organizations as their prices decline. Hybrid 3D plastic printing technologies and low-cost hobbyist 3D weld deposition systems are already in development which will make the best 3D printers accessible and affordable. This book will assist the reader in determining what is required to begin, which software, supplies, and procedures best suit, and where to obtain additional information. Audience The book will be used by engineers and R&D researchers involved in advanced additive manufacturing technology, postgraduate students in various disciplines such as mechanical, manufacturing, biomedical, and industrial engineering, etc. It will also serve as a reference manual for manufacturing and materials engineers involved in additive manufacturing and product development.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Sandip Kunar, PhD, is an assistant professor in the Department of Mechanical Engineering, Aditya Engineering College, A.P., India. He has published more than 50 research papers in various reputed international journals, national and international conference proceedings, 16 book chapters, and 9 books as well as two patents. His research interests include non-conventional machining processes, micromachining processes, advanced manufacturing technology, and industrial engineering. Jagadeesha T, PhD, is an associate professor in the Department of Mechanical Engineering, National Institute of Technology Calicut, India. He has 25 years of industry and academic experience and has authored mechanical engineering workbooks and textbooks and published more than 75 papers in international and national journals/conferences. As well as four patents. His research interests are advanced machining, additive manufacturing, fluid power control, advanced materials, vibration and noise control, and FEM. S. Rama Sree, PhD, is a professor in the Computer Science and Engineering Department, Aditya Engineering College, India. She has published more than 50 papers in international/national journals and conferences, four patents, and co-authored on data structures. Her research interests include software, soft computing, applications of machine learning techniques, medical diagnosis and cloud computing. K. V. S. R. Murthy, PhD, is a professor in the Electrical and Electronics Engineering Department, Aditya Engineering College, India. He is an expert in power system operation and control, and the application of artificial intelligence techniques in power distribution systems. He has published 35 research papers in various journals/conferences. M. Sreenivasa Reddy, PhD, is the Director of Aditya Group of Educational Institutions and Principal of Aditya Engineering College, India. He has more than 25 years of industry and academic experience and is an expert in additive manufacturing technology. He has 11 patents granted and published many journal articles and book chapters.