This book constitutes refereed proceedings of the Third International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2022, held in April, 2022. The 9 full papers and 4 short papers were carefully reviewed and selected from 34 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact of gender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
This book constitutes refereed proceedings of the Third International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2022, held in April, 2022. The 9 full papers and 4 short papers were carefully reviewed and selected from 34 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact of gender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
Produktdetails
Produktdetails
Communications in Computer and Information Science 1610
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems.- Recommender Systems and Users' Behaviour Effect on Choice's Distribution and Quality.- Sequential Nature of Recommender Systems Disrupts the Evaluation Process.- Towards an Approach for Analyzing Dynamic Aspects of Bias and Beyond-Accuracy Measures.- A Crowdsourcing Methodology to Measure Algorithmic Bias in Black-box Systems: A Case Study with COVID-related Searches.- The Unfairness of Active Users and Popularity Bias in Point-of-Interest Recommendation.- The Unfairness of Popularity Bias in Book Recommendation.- Mitigating Popularity Bias in Recommendation: Potential and Limits of Calibration Approaches.- Analysis of Biases in Calibrated Recommendations.- Do Perceived Gender Biases in Retrieval Results affect Users' Relevance Judgements?.- Enhancing Fairness in Classification Tasks with Multiple Variables: a Data- and Model-Agnostic Approach.- Keyword Recommendation for Fair Search.- FARGO: a Fair, context-AwaRe, Group recOmmender system.
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems.- Recommender Systems and Users' Behaviour Effect on Choice's Distribution and Quality.- Sequential Nature of Recommender Systems Disrupts the Evaluation Process.- Towards an Approach for Analyzing Dynamic Aspects of Bias and Beyond-Accuracy Measures.- A Crowdsourcing Methodology to Measure Algorithmic Bias in Black-box Systems: A Case Study with COVID-related Searches.- The Unfairness of Active Users and Popularity Bias in Point-of-Interest Recommendation.- The Unfairness of Popularity Bias in Book Recommendation.- Mitigating Popularity Bias in Recommendation: Potential and Limits of Calibration Approaches.- Analysis of Biases in Calibrated Recommendations.- Do Perceived Gender Biases in Retrieval Results affect Users' Relevance Judgements?.- Enhancing Fairness in Classification Tasks with Multiple Variables: a Data- and Model-Agnostic Approach.- Keyword Recommendation for Fair Search.- FARGO: a Fair, context-AwaRe, Group recOmmender system.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826