LiuSecond International Symposium, IDA-97, London, UK, August 4-6, 1997, Proceedings
Advances in Intelligent Data Analysis. Reasoning about Data
Second International Symposium, IDA-97, London, UK, August 4-6, 1997, Proceedings
Mitarbeit:Liu Xiahui; Cohen, Paul; Berthold, Michael R.
LiuSecond International Symposium, IDA-97, London, UK, August 4-6, 1997, Proceedings
Advances in Intelligent Data Analysis. Reasoning about Data
Second International Symposium, IDA-97, London, UK, August 4-6, 1997, Proceedings
Mitarbeit:Liu Xiahui; Cohen, Paul; Berthold, Michael R.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the Second International Symposium on Intelligent Data Analysis, IDA-97, held in London, UK, in August 1997. The volume presents 50 revised full papers selected from a total of 107 submissions. Also included is a keynote, Intelligent Data Analysis: Issues and Opportunities, by David J. Hand. The papers are organized in sections on exploratory data analysis, preprocessing and tools; classification and feature selection; medical applications; soft computing; knowledge discovery and data mining; estimation and clustering; data quality; qualitative models.…mehr
Andere Kunden interessierten sich auch für
- ArikawaDiscovery Science42,99 €
- Jan M. Zytkow / Jan Rauch (eds.)Principles of Data Mining and Knowledge Discovery83,99 €
- ZytkowPrinciples of Data Mining and Knowledge Discovery42,99 €
- David J. Hand / Joost N. Kok / Michael R. Berthold (eds.)Advances in Intelligent Data Analysis100,99 €
- Krzysztof J. CiosData Mining Methods for Knowledge Discovery125,99 €
- Krzysztof J. CiosData Mining Methods for Knowledge Discovery110,99 €
- Hongjun Lu / Aoying Zhou (eds.)Web-Age Information Management42,99 €
-
-
-
This book constitutes the refereed proceedings of the Second International Symposium on Intelligent Data Analysis, IDA-97, held in London, UK, in August 1997.
The volume presents 50 revised full papers selected from a total of 107 submissions. Also included is a keynote, Intelligent Data Analysis: Issues and Opportunities, by David J. Hand. The papers are organized in sections on exploratory data analysis, preprocessing and tools; classification and feature selection; medical applications; soft computing; knowledge discovery and data mining; estimation and clustering; data quality; qualitative models.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
The volume presents 50 revised full papers selected from a total of 107 submissions. Also included is a keynote, Intelligent Data Analysis: Issues and Opportunities, by David J. Hand. The papers are organized in sections on exploratory data analysis, preprocessing and tools; classification and feature selection; medical applications; soft computing; knowledge discovery and data mining; estimation and clustering; data quality; qualitative models.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science Nr.1280
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 10547800, 978-3-540-63346-4
- 1997.
- Seitenzahl: 640
- Erscheinungstermin: 23. Juli 1997
- Englisch
- Abmessung: 235mm x 155mm x 35mm
- Gewicht: 954g
- ISBN-13: 9783540633464
- ISBN-10: 3540633464
- Artikelnr.: 09255161
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science Nr.1280
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 10547800, 978-3-540-63346-4
- 1997.
- Seitenzahl: 640
- Erscheinungstermin: 23. Juli 1997
- Englisch
- Abmessung: 235mm x 155mm x 35mm
- Gewicht: 954g
- ISBN-13: 9783540633464
- ISBN-10: 3540633464
- Artikelnr.: 09255161
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Intelligent data analysis: Issues and opportunities.- Decomposition of heterogeneous classification problems.- Managing dialogue in a statistical expert assistant with a cluster-based user model.- How to find big-oh in your data set (and how not to).- Data classification using a W.I.S.E. toolbox.- Mill's methods for complete Intelligent Data Analysis.- Integrating many techniques for discovering structure in data.- Meta-Reasoning for Data Analysis Tool Allocation.- Navigation for data analysis systems.- An annotated data collection system to support intelligent analysis of Intensive Care Unit data.- A combined approach to uncertain data analysis.- A connectionist approach to the distance-based analysis of relational data.- Efficient GA based techniques for automating the design of classification models.- Data representations and machine learning techniques.- Development of a knowledge-driven constructive induction mechanism.- Oblique linear tree.- Feature selection for neural networks through functional links found by evolutionary computation.- Building simple models: A case study with decision trees.- Exploiting symbolic learning in visual inspection.- Forming categories in exploratory data analysis and data mining.- A systematic description of greedy optimisation algorithms for cost sensitive generalisation.- Dissimilarity measure for collections of objects and values.- ECG segmentation using time-warping.- Interpreting longitudinal data through temporal abstractions: An application to diabetic patients monitoring.- Intelligent support for multidimensional data analysis in environmental epidemiology.- Network performance assessment for Neurofuzzy data modelling.- A genetic approach to fuzzy clustering with a validity measure fitness function.- The analysis of artificial neural network data models.- Simulation data analysis using Fuzzy Graphs.- Mathematical analysis of fuzzy classifiers.- Neuro-fuzzy diagnosis system with a rated diagnosis reliability and visual data analysis.- Genetic Fuzzy Clustering by means of discovering membership functions.- A strategy for increasing the efficiency of rule discovery in data mining.- Intelligent text analysis for dynamically maintaining and updating domain knowledge bases.- Knowledge discovery in endgame databases.- Parallel induction algorithms for data mining.- Data analysis for query processing.- Datum discovery.- A connectionist approach to extracting knowledge from databases.- A modulated Parzen-windows approach for probability density estimation.- Improvement on estimating quantites in finite population using indirect methods of estimation.- Robustness of clustering under outliers.- The BANG-clustering system: Grid-based data analysis.- Techniques for dealing with missing values in classification.- The use of exogenous knowledge to learn Bayesian Networks from incomplete databases.- Reasoning about outliers by modelling noisy data.- Reasoning about sensor data for automated system identification.- Modelling discrete event sequences as state transition diagrams.- Detecting and describing patterns in time-varying data using wavelets.- Diagnosis of tank ballast systems.- Qualitative uncertainty models from random set theory.
Intelligent data analysis: Issues and opportunities.- Decomposition of heterogeneous classification problems.- Managing dialogue in a statistical expert assistant with a cluster-based user model.- How to find big-oh in your data set (and how not to).- Data classification using a W.I.S.E. toolbox.- Mill's methods for complete Intelligent Data Analysis.- Integrating many techniques for discovering structure in data.- Meta-Reasoning for Data Analysis Tool Allocation.- Navigation for data analysis systems.- An annotated data collection system to support intelligent analysis of Intensive Care Unit data.- A combined approach to uncertain data analysis.- A connectionist approach to the distance-based analysis of relational data.- Efficient GA based techniques for automating the design of classification models.- Data representations and machine learning techniques.- Development of a knowledge-driven constructive induction mechanism.- Oblique linear tree.- Feature selection for neural networks through functional links found by evolutionary computation.- Building simple models: A case study with decision trees.- Exploiting symbolic learning in visual inspection.- Forming categories in exploratory data analysis and data mining.- A systematic description of greedy optimisation algorithms for cost sensitive generalisation.- Dissimilarity measure for collections of objects and values.- ECG segmentation using time-warping.- Interpreting longitudinal data through temporal abstractions: An application to diabetic patients monitoring.- Intelligent support for multidimensional data analysis in environmental epidemiology.- Network performance assessment for Neurofuzzy data modelling.- A genetic approach to fuzzy clustering with a validity measure fitness function.- The analysis of artificial neural network data models.- Simulation data analysis using Fuzzy Graphs.- Mathematical analysis of fuzzy classifiers.- Neuro-fuzzy diagnosis system with a rated diagnosis reliability and visual data analysis.- Genetic Fuzzy Clustering by means of discovering membership functions.- A strategy for increasing the efficiency of rule discovery in data mining.- Intelligent text analysis for dynamically maintaining and updating domain knowledge bases.- Knowledge discovery in endgame databases.- Parallel induction algorithms for data mining.- Data analysis for query processing.- Datum discovery.- A connectionist approach to extracting knowledge from databases.- A modulated Parzen-windows approach for probability density estimation.- Improvement on estimating quantites in finite population using indirect methods of estimation.- Robustness of clustering under outliers.- The BANG-clustering system: Grid-based data analysis.- Techniques for dealing with missing values in classification.- The use of exogenous knowledge to learn Bayesian Networks from incomplete databases.- Reasoning about outliers by modelling noisy data.- Reasoning about sensor data for automated system identification.- Modelling discrete event sequences as state transition diagrams.- Detecting and describing patterns in time-varying data using wavelets.- Diagnosis of tank ballast systems.- Qualitative uncertainty models from random set theory.