Advances in Statistical Bioinformatics
Herausgeber: Do, Kim-Anh; Qin, Zhaohui S.; Qin, Steven
Advances in Statistical Bioinformatics
Herausgeber: Do, Kim-Anh; Qin, Zhaohui S.; Qin, Steven
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations.
Andere Kunden interessierten sich auch für
- James D. MalleyStatistical Learning for Biomedical Data69,99 €
- Jean-Louis Auget / N. Balakrishnan / Mounir Mesbah / Geert Molenberghs (eds.)Advances in Statistical Methods for the Health Sciences132,99 €
- Toshiro TangoStatistical Methods for Disease Clustering81,99 €
- Richard Chappell / KyungMann Kim / David L DeMetsIntroduction to Statistical Methods for Clinical Trials131,99 €
- Fred L. BooksteinA Course in Morphometrics for Biologists104,99 €
- Environmental Social Sciences111,99 €
- Methods of Microarray Data Analysis II74,99 €
-
-
-
This book describes the integration of high-throughput bioinformatics data from multiple platforms to inform our understanding of the functional consequences of genomic alterations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 514
- Erscheinungstermin: 13. August 2014
- Englisch
- Abmessung: 235mm x 157mm x 32mm
- Gewicht: 887g
- ISBN-13: 9781107027527
- ISBN-10: 1107027527
- Artikelnr.: 38417562
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 514
- Erscheinungstermin: 13. August 2014
- Englisch
- Abmessung: 235mm x 157mm x 32mm
- Gewicht: 887g
- ISBN-13: 9781107027527
- ISBN-10: 1107027527
- Artikelnr.: 38417562
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1. An introduction to next-generation biological platforms Virginia
Mohlere, Wenting Wang and Ganiraju Manyam; 2. An introduction to the cancer
genome atlas Bradley M. Broom and Rehan Akbani; 3. DNA variant calling in
targeted sequencing data Wenyi Wang, Yu Fan and Terence P. Speed; 4.
Statistical analysis of mapped reads from mRNA-seq data Ernest Turro and
Alex Lewin; 5. Model-based methods for transcript expression level
quantification in RNA-seq Zhaonan Sun, Han Wu and Yu Zhu; 6. Bayesian
model-based approaches for solexa sequencing data Riten Mitra, Peter
Mueller and Yuan Ji; 7. Statistical aspects of ChIP-seq analysis Jonathan
Cairns, Andy G. Lynch and Simon Tavare; 8. Bayesian modeling of ChIP-seq
data from transcription factor to nucleosome positioning Raphael Gottardo
and Sangsoon Woo; 9. Multivariate linear models for GWAS Chiara Sabatti;
10. Bayesian model averaging for genetic association studies Christine
Peterson, Michael Swartz, Sanjay Shete and Marina Vannucci; 11.
Whole-genome multi-SNP-phenotype association analysis Yongtao Guan and Kai
Wang; 12. Methods for the analysis of copy number data in cancer research
Bradley M. Broom, Kim-Anh Do, Melissa Bondy, Patricia Thompson and Kevin
Coombes; 13. Bayesian models for integrative genomics Francesco C. Stingo
and Marina Vannucci; 14. Bayesian graphical models for integrating
multiplatform genomics data Wenting Wang, Veerabhadran Baladandayuthapani,
Chris C. Holmes and Kim-Anh Do; 15. Genetical genomics data: some
statistical problems and solutions Hongzhe Li; 16. A Bayesian framework for
integrating copy number and gene expression data Yuan Ji, Filippo Trentini
and Peter Muller; 17. Application of Bayesian sparse factor analysis models
in bioinformatics Haisu Ma and Hongyu Zhao; 18. Predicting cancer subtypes
using survival-supervised latent Dirichlet allocation models Keegan
Korthauer, John Dawson and Christina Kendziorski; 19. Regularization
techniques for highly correlated gene expression data with unknown group
structure Brent A. Johnson; 20. Optimized cross-study analysis of
microarray-based predictors Xiaogang Zhong, Luigi Marchionni, Leslie Cope,
Edwin S. Iversen, Elizabeth S. Garrett-Mayer, Edward Gabrielson and
Giovanni Parmigiani; 21. Functional enrichment testing: a survey of
statistical methods Laila M. Poisson; 22. Discover trend and progression
underlying high-dimensional data Peng Qiu; 23. Bayesian phylogenetics
adapts to comprehensive infectious disease sequence data Jennifer A. Tom,
Janet S. Sinsheimer and Marc A. Suchard.
Mohlere, Wenting Wang and Ganiraju Manyam; 2. An introduction to the cancer
genome atlas Bradley M. Broom and Rehan Akbani; 3. DNA variant calling in
targeted sequencing data Wenyi Wang, Yu Fan and Terence P. Speed; 4.
Statistical analysis of mapped reads from mRNA-seq data Ernest Turro and
Alex Lewin; 5. Model-based methods for transcript expression level
quantification in RNA-seq Zhaonan Sun, Han Wu and Yu Zhu; 6. Bayesian
model-based approaches for solexa sequencing data Riten Mitra, Peter
Mueller and Yuan Ji; 7. Statistical aspects of ChIP-seq analysis Jonathan
Cairns, Andy G. Lynch and Simon Tavare; 8. Bayesian modeling of ChIP-seq
data from transcription factor to nucleosome positioning Raphael Gottardo
and Sangsoon Woo; 9. Multivariate linear models for GWAS Chiara Sabatti;
10. Bayesian model averaging for genetic association studies Christine
Peterson, Michael Swartz, Sanjay Shete and Marina Vannucci; 11.
Whole-genome multi-SNP-phenotype association analysis Yongtao Guan and Kai
Wang; 12. Methods for the analysis of copy number data in cancer research
Bradley M. Broom, Kim-Anh Do, Melissa Bondy, Patricia Thompson and Kevin
Coombes; 13. Bayesian models for integrative genomics Francesco C. Stingo
and Marina Vannucci; 14. Bayesian graphical models for integrating
multiplatform genomics data Wenting Wang, Veerabhadran Baladandayuthapani,
Chris C. Holmes and Kim-Anh Do; 15. Genetical genomics data: some
statistical problems and solutions Hongzhe Li; 16. A Bayesian framework for
integrating copy number and gene expression data Yuan Ji, Filippo Trentini
and Peter Muller; 17. Application of Bayesian sparse factor analysis models
in bioinformatics Haisu Ma and Hongyu Zhao; 18. Predicting cancer subtypes
using survival-supervised latent Dirichlet allocation models Keegan
Korthauer, John Dawson and Christina Kendziorski; 19. Regularization
techniques for highly correlated gene expression data with unknown group
structure Brent A. Johnson; 20. Optimized cross-study analysis of
microarray-based predictors Xiaogang Zhong, Luigi Marchionni, Leslie Cope,
Edwin S. Iversen, Elizabeth S. Garrett-Mayer, Edward Gabrielson and
Giovanni Parmigiani; 21. Functional enrichment testing: a survey of
statistical methods Laila M. Poisson; 22. Discover trend and progression
underlying high-dimensional data Peng Qiu; 23. Bayesian phylogenetics
adapts to comprehensive infectious disease sequence data Jennifer A. Tom,
Janet S. Sinsheimer and Marc A. Suchard.
1. An introduction to next-generation biological platforms Virginia
Mohlere, Wenting Wang and Ganiraju Manyam; 2. An introduction to the cancer
genome atlas Bradley M. Broom and Rehan Akbani; 3. DNA variant calling in
targeted sequencing data Wenyi Wang, Yu Fan and Terence P. Speed; 4.
Statistical analysis of mapped reads from mRNA-seq data Ernest Turro and
Alex Lewin; 5. Model-based methods for transcript expression level
quantification in RNA-seq Zhaonan Sun, Han Wu and Yu Zhu; 6. Bayesian
model-based approaches for solexa sequencing data Riten Mitra, Peter
Mueller and Yuan Ji; 7. Statistical aspects of ChIP-seq analysis Jonathan
Cairns, Andy G. Lynch and Simon Tavare; 8. Bayesian modeling of ChIP-seq
data from transcription factor to nucleosome positioning Raphael Gottardo
and Sangsoon Woo; 9. Multivariate linear models for GWAS Chiara Sabatti;
10. Bayesian model averaging for genetic association studies Christine
Peterson, Michael Swartz, Sanjay Shete and Marina Vannucci; 11.
Whole-genome multi-SNP-phenotype association analysis Yongtao Guan and Kai
Wang; 12. Methods for the analysis of copy number data in cancer research
Bradley M. Broom, Kim-Anh Do, Melissa Bondy, Patricia Thompson and Kevin
Coombes; 13. Bayesian models for integrative genomics Francesco C. Stingo
and Marina Vannucci; 14. Bayesian graphical models for integrating
multiplatform genomics data Wenting Wang, Veerabhadran Baladandayuthapani,
Chris C. Holmes and Kim-Anh Do; 15. Genetical genomics data: some
statistical problems and solutions Hongzhe Li; 16. A Bayesian framework for
integrating copy number and gene expression data Yuan Ji, Filippo Trentini
and Peter Muller; 17. Application of Bayesian sparse factor analysis models
in bioinformatics Haisu Ma and Hongyu Zhao; 18. Predicting cancer subtypes
using survival-supervised latent Dirichlet allocation models Keegan
Korthauer, John Dawson and Christina Kendziorski; 19. Regularization
techniques for highly correlated gene expression data with unknown group
structure Brent A. Johnson; 20. Optimized cross-study analysis of
microarray-based predictors Xiaogang Zhong, Luigi Marchionni, Leslie Cope,
Edwin S. Iversen, Elizabeth S. Garrett-Mayer, Edward Gabrielson and
Giovanni Parmigiani; 21. Functional enrichment testing: a survey of
statistical methods Laila M. Poisson; 22. Discover trend and progression
underlying high-dimensional data Peng Qiu; 23. Bayesian phylogenetics
adapts to comprehensive infectious disease sequence data Jennifer A. Tom,
Janet S. Sinsheimer and Marc A. Suchard.
Mohlere, Wenting Wang and Ganiraju Manyam; 2. An introduction to the cancer
genome atlas Bradley M. Broom and Rehan Akbani; 3. DNA variant calling in
targeted sequencing data Wenyi Wang, Yu Fan and Terence P. Speed; 4.
Statistical analysis of mapped reads from mRNA-seq data Ernest Turro and
Alex Lewin; 5. Model-based methods for transcript expression level
quantification in RNA-seq Zhaonan Sun, Han Wu and Yu Zhu; 6. Bayesian
model-based approaches for solexa sequencing data Riten Mitra, Peter
Mueller and Yuan Ji; 7. Statistical aspects of ChIP-seq analysis Jonathan
Cairns, Andy G. Lynch and Simon Tavare; 8. Bayesian modeling of ChIP-seq
data from transcription factor to nucleosome positioning Raphael Gottardo
and Sangsoon Woo; 9. Multivariate linear models for GWAS Chiara Sabatti;
10. Bayesian model averaging for genetic association studies Christine
Peterson, Michael Swartz, Sanjay Shete and Marina Vannucci; 11.
Whole-genome multi-SNP-phenotype association analysis Yongtao Guan and Kai
Wang; 12. Methods for the analysis of copy number data in cancer research
Bradley M. Broom, Kim-Anh Do, Melissa Bondy, Patricia Thompson and Kevin
Coombes; 13. Bayesian models for integrative genomics Francesco C. Stingo
and Marina Vannucci; 14. Bayesian graphical models for integrating
multiplatform genomics data Wenting Wang, Veerabhadran Baladandayuthapani,
Chris C. Holmes and Kim-Anh Do; 15. Genetical genomics data: some
statistical problems and solutions Hongzhe Li; 16. A Bayesian framework for
integrating copy number and gene expression data Yuan Ji, Filippo Trentini
and Peter Muller; 17. Application of Bayesian sparse factor analysis models
in bioinformatics Haisu Ma and Hongyu Zhao; 18. Predicting cancer subtypes
using survival-supervised latent Dirichlet allocation models Keegan
Korthauer, John Dawson and Christina Kendziorski; 19. Regularization
techniques for highly correlated gene expression data with unknown group
structure Brent A. Johnson; 20. Optimized cross-study analysis of
microarray-based predictors Xiaogang Zhong, Luigi Marchionni, Leslie Cope,
Edwin S. Iversen, Elizabeth S. Garrett-Mayer, Edward Gabrielson and
Giovanni Parmigiani; 21. Functional enrichment testing: a survey of
statistical methods Laila M. Poisson; 22. Discover trend and progression
underlying high-dimensional data Peng Qiu; 23. Bayesian phylogenetics
adapts to comprehensive infectious disease sequence data Jennifer A. Tom,
Janet S. Sinsheimer and Marc A. Suchard.