Advances in Swarm Intelligence
15th International Conference on Swarm Intelligence, ICSI 2024, Xining, China, August 23¿26, 2024, Proceedings, Part I
Herausgegeben:Tan, Ying; Shi, Yuhui
Advances in Swarm Intelligence
15th International Conference on Swarm Intelligence, ICSI 2024, Xining, China, August 23¿26, 2024, Proceedings, Part I
Herausgegeben:Tan, Ying; Shi, Yuhui
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This two-volume set LNCS 14788 and 14789 constitutes the refereed post-conference proceedings of the 15th International Conference on Advances in Swarm Intelligence, ICSI 2024, held in Xining, China, during August 23-26, 2024.
The 74 revised full papers presented in these proceedings were carefully reviewed and selected from 156 submissions. The papers are organized in the following topical sections:
Part I - Particle swarm optimization; Swarm intelligence computing; Differential evolution; Evolutionary algorithms; Multi-agent reinforcement learning & Multi-objective…mehr
- Advances in Swarm Intelligence55,99 €
- Advances in Swarm Intelligence37,99 €
- Advances in Swarm Intelligence37,99 €
- Advances in Swarm Intelligence59,99 €
- Advances in Swarm Intelligence66,99 €
- Advances in Swarm Intelligence55,99 €
- Advances in Swarm Intelligence55,99 €
-
-
-
The 74 revised full papers presented in these proceedings were carefully reviewed and selected from 156 submissions. The papers are organized in the following topical sections:
Part I - Particle swarm optimization; Swarm intelligence computing; Differential evolution; Evolutionary algorithms; Multi-agent reinforcement learning & Multi-objective optimization.
Part II - Route planning problem; Machine learning; Detection and prediction; Classification; Edge computing; Modeling and optimization & Analysis of review.
- Produktdetails
- Lecture Notes in Computer Science 14788
- Verlag: Springer / Springer Nature Singapore / Springer, Berlin
- Artikelnr. des Verlages: 978-981-97-7180-6
- 2024
- Seitenzahl: 500
- Erscheinungstermin: 21. August 2024
- Englisch
- Abmessung: 235mm x 155mm x 27mm
- Gewicht: 751g
- ISBN-13: 9789819771806
- ISBN-10: 9819771803
- Artikelnr.: 71253656
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Lecture Notes in Computer Science 14788
- Verlag: Springer / Springer Nature Singapore / Springer, Berlin
- Artikelnr. des Verlages: 978-981-97-7180-6
- 2024
- Seitenzahl: 500
- Erscheinungstermin: 21. August 2024
- Englisch
- Abmessung: 235mm x 155mm x 27mm
- Gewicht: 751g
- ISBN-13: 9789819771806
- ISBN-10: 9819771803
- Artikelnr.: 71253656
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
.- Set-Based Particle Swarm Optimization for the Multi-Objective Multi-Dimensional Knapsack Problem.
.- Proposal of a Memory-Based Ensemble Particle Swarm Optimizer.
.- A Tri-swarm Particle Swarm Optimization Considering the Cooperation and the Fitness Value.
.- A Modified Variable Velocity Strategy Particle Swarm Optimization Algorithm for Multi-objective Feature Selection.
.- Multi-Strategy Enhanced Particle Swarm Optimization Algorithm for Elevator Group Scheduling.
.- A Self-Learning Particle Swarm Optimization Algorithm for Dynamic Job Shop Scheduling Problem with New Jobs Insertion.
.- Convolutional Neural Network Architecture Design Using An Improved Surrogate-assisted Particle Swarm Optimization Algorithm.
.- Swarm Intelligence Computing.
.- Cooperative Search and Rescue Target Assignment Based on Improved Ant Colony Algorithm.
.- A Metabolic Pathway Design Method based on surrogate-assisted Fireworks Algorithm.
.- Circle Chaotic Search-Based Butterfly Optimization Algorithm.
.- An Adaptive Bacterial Foraging Optimization Algorithm Based on Chaos-Enhanced Non-Elite Reverse Learning.
.- Enhanced Bacterial Foraging Optimization with Dynamic Disturbance Learning and Bilayer Nested Structure.
.- Improved Kepler Optimization Algorithm Based on Mixed Strategy.
.- Harmony Search with Dynamic Dimensional-reduction Adjustment Strategy for Large-scale Absolute Value Equation.
.- Massive Conscious Neighborhood-based Crow Search Algorithm for the Pseudo-Coloring Problem.
.- Multi-Strategy Integration Model Based on Black-Winged Kite Algorithm and Artificial Rabbit Optimization.
.- Differential Evolution.
.- Fractional Order Differential Evolution to Solve Parameter Estimation Problem of Solar Photovoltaic Models.
.- Enhanced Dingo Optimization Algorithm Based on Differential Evolution and Chaotic Mapping for Engineering Optimization.
.- Hierarchical Adaptive Differential Evolution with Local Search for Extreme Learning Machine.
.- Metaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approach.
.- Evolutionary Algorithms.
.- A Multi-modal Multi-objective Evolutionary Algorithm Based on Multi-criteria Grouping.
.- Constructing Robust and Influential Networks against Cascading Failures via a Multi-objective Evolutionary Algorithm.
.- Fault Reconfiguration of Distribution Networks Using an Enhanced Multimodal Multi-objective Evolutionary Algorithm.
.- Attacking Evolutionary Algorithms via SparseEA.
.- Evolutionary Computation with Distance-based Pretreatment for Multimodal Problems.
.- Multi-Agent Reinforcement Learning.
.- Stock Price Prediction Model Based on Blending Model Improved with Sentiment Factors and Double Q-learning.
.- Stock price prediction mdoel integrating an improved NSGA-III with Random Forest.
.- Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming.
.- Diversity Improved Genetic Algorithm for Weapon Target Assignment.
.- An Investigation of Underground Rescue Scheduling with Multi-Agent Reinforcement Learning.
.- Distributed Advantage-based Weights Reshaping Algorithm with Sparse Reward.
.- Multi-objective Optimization.
.- A Joint Prediction Strategy based on Multiple Feature Points for Dynamic Multi-objective Optimization.
.- An Expensive Multi-objective Optimization Algorithm Based on Regional Density Ratio.
.- Robust Lightweight Neural Network Architecture Search-based on Multi-objective Particle Swarm Optimization.
.- Surrogate-Assisted Multi-Objective Evolutionary Algorithm Guided by Multi-Reference Points.
.- Multi-objective Path planning of Multiple Unmanned Air Vehicles Using the CCMO Algorithm.
.- Multi-UAV Collaborative Detection Based on Reinforcement Learning.
.- Set-Based Particle Swarm Optimization for the Multi-Objective Multi-Dimensional Knapsack Problem.
.- Proposal of a Memory-Based Ensemble Particle Swarm Optimizer.
.- A Tri-swarm Particle Swarm Optimization Considering the Cooperation and the Fitness Value.
.- A Modified Variable Velocity Strategy Particle Swarm Optimization Algorithm for Multi-objective Feature Selection.
.- Multi-Strategy Enhanced Particle Swarm Optimization Algorithm for Elevator Group Scheduling.
.- A Self-Learning Particle Swarm Optimization Algorithm for Dynamic Job Shop Scheduling Problem with New Jobs Insertion.
.- Convolutional Neural Network Architecture Design Using An Improved Surrogate-assisted Particle Swarm Optimization Algorithm.
.- Swarm Intelligence Computing.
.- Cooperative Search and Rescue Target Assignment Based on Improved Ant Colony Algorithm.
.- A Metabolic Pathway Design Method based on surrogate-assisted Fireworks Algorithm.
.- Circle Chaotic Search-Based Butterfly Optimization Algorithm.
.- An Adaptive Bacterial Foraging Optimization Algorithm Based on Chaos-Enhanced Non-Elite Reverse Learning.
.- Enhanced Bacterial Foraging Optimization with Dynamic Disturbance Learning and Bilayer Nested Structure.
.- Improved Kepler Optimization Algorithm Based on Mixed Strategy.
.- Harmony Search with Dynamic Dimensional-reduction Adjustment Strategy for Large-scale Absolute Value Equation.
.- Massive Conscious Neighborhood-based Crow Search Algorithm for the Pseudo-Coloring Problem.
.- Multi-Strategy Integration Model Based on Black-Winged Kite Algorithm and Artificial Rabbit Optimization.
.- Differential Evolution.
.- Fractional Order Differential Evolution to Solve Parameter Estimation Problem of Solar Photovoltaic Models.
.- Enhanced Dingo Optimization Algorithm Based on Differential Evolution and Chaotic Mapping for Engineering Optimization.
.- Hierarchical Adaptive Differential Evolution with Local Search for Extreme Learning Machine.
.- Metaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approach.
.- Evolutionary Algorithms.
.- A Multi-modal Multi-objective Evolutionary Algorithm Based on Multi-criteria Grouping.
.- Constructing Robust and Influential Networks against Cascading Failures via a Multi-objective Evolutionary Algorithm.
.- Fault Reconfiguration of Distribution Networks Using an Enhanced Multimodal Multi-objective Evolutionary Algorithm.
.- Attacking Evolutionary Algorithms via SparseEA.
.- Evolutionary Computation with Distance-based Pretreatment for Multimodal Problems.
.- Multi-Agent Reinforcement Learning.
.- Stock Price Prediction Model Based on Blending Model Improved with Sentiment Factors and Double Q-learning.
.- Stock price prediction mdoel integrating an improved NSGA-III with Random Forest.
.- Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming.
.- Diversity Improved Genetic Algorithm for Weapon Target Assignment.
.- An Investigation of Underground Rescue Scheduling with Multi-Agent Reinforcement Learning.
.- Distributed Advantage-based Weights Reshaping Algorithm with Sparse Reward.
.- Multi-objective Optimization.
.- A Joint Prediction Strategy based on Multiple Feature Points for Dynamic Multi-objective Optimization.
.- An Expensive Multi-objective Optimization Algorithm Based on Regional Density Ratio.
.- Robust Lightweight Neural Network Architecture Search-based on Multi-objective Particle Swarm Optimization.
.- Surrogate-Assisted Multi-Objective Evolutionary Algorithm Guided by Multi-Reference Points.
.- Multi-objective Path planning of Multiple Unmanned Air Vehicles Using the CCMO Algorithm.
.- Multi-UAV Collaborative Detection Based on Reinforcement Learning.