74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Broschiertes Buch

This thesis constitutes an extraordinary innovative research approach in transferring the concepts and methods of complex systems to risk research. It ambitiously bridges the barriers between theoretical, empirical and methodical research work and integrates these fields into one comprehensive approach of dealing with uncertainty in socio-ecological systems. The developed agent-based simulation aims at the dynamics of social vulnerability in the considered system of the German North Sea Coast. Thus, the social simulation provides an analytical method to explore the individual, relational, and…mehr

Produktbeschreibung
This thesis constitutes an extraordinary innovative research approach in transferring the concepts and methods of complex systems to risk research. It ambitiously bridges the barriers between theoretical, empirical and methodical research work and integrates these fields into one comprehensive approach of dealing with uncertainty in socio-ecological systems. The developed agent-based simulation aims at the dynamics of social vulnerability in the considered system of the German North Sea Coast. Thus, the social simulation provides an analytical method to explore the individual, relational, and spatial aspects leading to dynamics of vulnerability in society. Combining complexity science and risk research by the method of agent-based simulation hereby emphasizes the importance of understanding interrelations inside the system for the system's development, i.e. for the evolving. Based on a vulnerability assessment regarding vulnerability characteristics, present risk behavior and self-protection preferences of private households against the impacts of flooding and storm surges, possible system trajectories could be explored by means of simulation experiments. The system-analytical approach therefore contributes to an integrated consideration of multi-dimensional and context-sensitv social phenomena such as vulnerability. Furthermore it achieves conceptually and strategically relevant implications for risk research and complex systems research.
Autorenporträt
Cilli Sobiech earned her doctoral degree at the University of Hamburg, Department of Integrative Geography. She worked at the Department Human Dimensions of Coastal Areas at the Institute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG) Germany. Her thesis deals with agent-based social simulation, complex systems research and vulnerability towards storm surges and climate change at the German North Sea Coast. She holds a diploma in Physical Geography from Leibniz University Hannover, Germany, and during her professional career she contributed to various projects dealing with strategies and tools for risk assessment and management in Europe and Latin America.