42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

Le problème étudié dans cette thèse est celui du débruitage d'images numériques corrompues par un bruit blanc gaussien. Les méthodes utilisées pour récupérer une meilleure image reposent sur les patchs et sont des variantes des Non-Local Means. Les contributions de la thèse sont à la fois pratiques et théoriques. Tout d'abord, on étudie précisément l'influence des divers paramètres de la méthode. On met ensuite en lumière une limite observée sur le traitement des bords par les méthodes à patchs habituelles. On donne alors une meilleure façon de combiner l'information fournie à partir des…mehr

Produktbeschreibung
Le problème étudié dans cette thèse est celui du débruitage d'images numériques corrompues par un bruit blanc gaussien. Les méthodes utilisées pour récupérer une meilleure image reposent sur les patchs et sont des variantes des Non-Local Means. Les contributions de la thèse sont à la fois pratiques et théoriques. Tout d'abord, on étudie précisément l'influence des divers paramètres de la méthode. On met ensuite en lumière une limite observée sur le traitement des bords par les méthodes à patchs habituelles. On donne alors une meilleure façon de combiner l'information fournie à partir des patchs pour estimer pixel par pixel. D'un point de vue théorique, on présente un cadre non asymptotique pour contrôler notre estimateur. On donne alors des résultats de type inégalités oracles pour des estimateurs vérifiant des propriétés plus restrictives. Les techniques utilisées reposent sur l'agrégation d'estimateurs, et plus particulièrement sur l'agrégation à poids exponentiels. La méthode requiert typiquement une mesure du risque, obtenue à travers un estimateur sans biais de celui-ci, par exemple par la méthode
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Ancien élève de l'ENSAE et de l'ENS Cachan, je viens de soutenir ma thèse, intitulée "Agrégation d'estimateurs et méthodes à patch pour le débruitage d'images numériques". Celle-ci a été dirigée par E. Le Pennec et de D. Picard (Université Paris Diderot-Paris 7). Mes recherche portent sur le lien entre statistiques et traitement d'images.