51,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
26 °P sammeln
  • Broschiertes Buch

Evaluation of advanced Air Traffic Management concepts is a challenging task due to the limitations in the existing scenario generation methodologies. Their rigorous evaluation on safety metrics, in a variety of complex scenarios, can provide an insight into their performance, which can help improve upon them while developing new ones. In this work, I propose an air traffic simulation system, with a novel representation of airspace, which can prototype advanced ATM concepts. I then propose a novel evolutionary computation methodology to algorithmically generate conflict scenarios of increasing…mehr

Produktbeschreibung
Evaluation of advanced Air Traffic Management
concepts is a challenging task due to the
limitations in the existing scenario generation
methodologies. Their rigorous evaluation on safety
metrics, in a variety of complex scenarios, can
provide an insight into their performance, which can
help improve upon them while developing new ones.
In this work, I propose an air traffic simulation
system, with a novel representation of airspace,
which can prototype advanced ATM concepts. I then
propose a novel evolutionary computation methodology
to algorithmically generate conflict scenarios of
increasing complexity in order to evaluate conflict
detection algorithms.
I illustrate the methodology by quantitative
evaluation of three conflict detection algorithms on
safety metrics. I then propose the use of data
mining techniques for the discovery of interesting
relationships, that may exist implicitly, in the
algorithm''s performance data.
This relationships are formed as a predictive model
for algorithm''s vulnerability which can then be
included in an ensemble that can
minimize the overall vulnerability of the system.
Autorenporträt
Dr. Sameer Alam is a Research Fellow at the University of New South Wales, Australian Defence Force Academy, Australia. He holds M.Tech. and Ph.D. in Computer Science.