- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The aim of this book is to teach the reader the topics in algebra which are useful in the study of computer science. In a clear, concise style, the author present the basic algebraic structures, and their applications to such topics as the finite Fourier transform, coding, complexity, and automata theory. The book can also be read profitably as a course in applied algebra for mathematics students.
Andere Kunden interessierten sich auch für
- Maurice MignotteMathematics for Computer Algebra37,99 €
- Wu Went-tsünMechanical Theorem Proving in Geometries42,99 €
- Proceedings of the Logic Colloquium. Held in Aachen, July 18-23, 198338,99 €
- Iain AdamsonA Set Theory Workbook42,99 €
- Coalgebraic Methods in Computer Science48,99 €
- Craig SmorynskiSelf-Reference and Modal Logic92,99 €
- H.-D. EbbinghausMathematical Logic35,99 €
-
-
-
The aim of this book is to teach the reader the topics in algebra which are useful in the study of computer science. In a clear, concise style, the author present the basic algebraic structures, and their applications to such topics as the finite Fourier transform, coding, complexity, and automata theory. The book can also be read profitably as a course in applied algebra for mathematics students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Universitext
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-0-387-96780-6
- Softcover reprint of the original 1st ed. 1988
- Seitenzahl: 212
- Erscheinungstermin: 1. August 1988
- Englisch
- Abmessung: 235mm x 155mm x 12mm
- Gewicht: 329g
- ISBN-13: 9780387967806
- ISBN-10: 038796780X
- Artikelnr.: 24519598
- Universitext
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-0-387-96780-6
- Softcover reprint of the original 1st ed. 1988
- Seitenzahl: 212
- Erscheinungstermin: 1. August 1988
- Englisch
- Abmessung: 235mm x 155mm x 12mm
- Gewicht: 329g
- ISBN-13: 9780387967806
- ISBN-10: 038796780X
- Artikelnr.: 24519598
1 Number theory.- 1.1 Divisibility.- 1.2 Congruences.- 1.3 The theorems of Fermat, Euler and Wilson.- 1.4 Squares and the quadratic reciprocity theorem.- 1.5 The Gaussian integers.- 1.6 Algebraic numbers.- 1.7 Appendix. Primitive elements and a theorem by Gauss.- Literature.- 2 Number theory and computing.- 2.1 The cost of arithmetic operations.- 2.2 Primes and factoring.- 2.3 Pseudo-random numbers.- Literature.- 3 Abstract algebra and modules.- 3.1 The four operations of arithmetic.- 3.2 Modules.- 3.3 Module morphisms. Kernels and images.- 3.4 The structure of finite modules.- 3.5 Appendix. Finitely generated modules.- Literature.- 4 The finite Fourier transform.- 4.1 Characters of modules.- 4.2 The finite Fourier transform.- 4.3 The finite Fourier transform and the quadratic reciprocity law.- 4.4 The fast Fourier transform.- Literature.- 5 Rings and fields.- 5.1 Definitions and simple examples.- 5.2 Modules over a ring. Ideals and morphisms.- 5.3 Abstract linear algebra.- Literature.- 6 Algebraic complexity theory.- 6.1 Polynomial rings in several variables.- 6.2 Complexity with respect to multiplication.- 6.3 Appendix. The fast Fourier transform is optimal.- Literature.- 7 Polynomial rings, algebraic fields, finite fields.- 7.1 Divisibility in a polynomial ring.- 7.2 Algebraic numbers and algebraic fields.- 7.3 Finite fields.- Literature.- 8 Shift registers and coding.- 8.1 The theory of shift registers.- 8.2 Generalities about coding.- 8.3 Cyclic codes.- 8.4 The BCH codes and the Reed-Solomon codes.- 8.5 Restrictions for error-correcting codes.- Literature.- 9 Groups.- 9.1 General theory.- 9.2 Finite groups.- Literature.- 10 Boolean algebra.- 10.1 Boolean algebras and rings.- 10.2 Finite Boolean algebras.- 10.3 Equivalence classes of switching functions.- Literature.- 11 Monoids, automata, languages.- 11.1 Matrices with elements in a non-commutative algebra.- 11.2 Monoids and languages.- 11.3 Automata and rational languages.- 11.4 Every rational language is accepted by a finite automaton.- Literature.- References.
1 Number theory.- 1.1 Divisibility.- 1.2 Congruences.- 1.3 The theorems of Fermat, Euler and Wilson.- 1.4 Squares and the quadratic reciprocity theorem.- 1.5 The Gaussian integers.- 1.6 Algebraic numbers.- 1.7 Appendix. Primitive elements and a theorem by Gauss.- Literature.- 2 Number theory and computing.- 2.1 The cost of arithmetic operations.- 2.2 Primes and factoring.- 2.3 Pseudo-random numbers.- Literature.- 3 Abstract algebra and modules.- 3.1 The four operations of arithmetic.- 3.2 Modules.- 3.3 Module morphisms. Kernels and images.- 3.4 The structure of finite modules.- 3.5 Appendix. Finitely generated modules.- Literature.- 4 The finite Fourier transform.- 4.1 Characters of modules.- 4.2 The finite Fourier transform.- 4.3 The finite Fourier transform and the quadratic reciprocity law.- 4.4 The fast Fourier transform.- Literature.- 5 Rings and fields.- 5.1 Definitions and simple examples.- 5.2 Modules over a ring. Ideals and morphisms.- 5.3 Abstract linear algebra.- Literature.- 6 Algebraic complexity theory.- 6.1 Polynomial rings in several variables.- 6.2 Complexity with respect to multiplication.- 6.3 Appendix. The fast Fourier transform is optimal.- Literature.- 7 Polynomial rings, algebraic fields, finite fields.- 7.1 Divisibility in a polynomial ring.- 7.2 Algebraic numbers and algebraic fields.- 7.3 Finite fields.- Literature.- 8 Shift registers and coding.- 8.1 The theory of shift registers.- 8.2 Generalities about coding.- 8.3 Cyclic codes.- 8.4 The BCH codes and the Reed-Solomon codes.- 8.5 Restrictions for error-correcting codes.- Literature.- 9 Groups.- 9.1 General theory.- 9.2 Finite groups.- Literature.- 10 Boolean algebra.- 10.1 Boolean algebras and rings.- 10.2 Finite Boolean algebras.- 10.3 Equivalence classes of switching functions.- Literature.- 11 Monoids, automata, languages.- 11.1 Matrices with elements in a non-commutative algebra.- 11.2 Monoids and languages.- 11.3 Automata and rational languages.- 11.4 Every rational language is accepted by a finite automaton.- Literature.- References.