Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications.…mehr
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 11805953, 978-3-540-36822-9
2007
Seitenzahl: 260
Erscheinungstermin: 9. Januar 2007
Englisch
Abmessung: 241mm x 160mm x 19mm
Gewicht: 558g
ISBN-13: 9783540368229
ISBN-10: 3540368221
Artikelnr.: 23054405
Autorenporträt
Marc Levine, Northeastern University, Boston, MA, USA / Fabien Morel, University of Munich, Germany
Inhaltsangabe
Introduction.- I. Cobordism and oriented cohomology.- 1.1. Oriented cohomology theories. 1.2. Algebraic cobordism. 1.3. Relations with complex cobordism. - II. The definition of algebraic cobordism. 2.1. Oriented Borel-Moore functions. 2.2. Oriented functors of geometric type. 2.3. Some elementary properties. 2.4. The construction of algebraic cobordism. 2.5. Some computations in algebraic cobordism.- III. Fundamental properties of algebraic cobordism. 3.1. Divisor classes. 3.2. Localization. 3.3. Transversality. 3.4. Homotopy invariance. 3.5. The projective bundle formula. 3.6. The extended homotopy property. IV. Algebraic cobordism and the Lazard ring. 4.1. Weak homology and Chern classes. 4.2. Algebraic cobordism and K-theory. 4.3. The cobordism ring of a point. 4.4. Degree formulas. 4.5. Comparison with the Chow groups. V. Oriented Borel-Moore homology. 5.1. Oriented Borel-Moore homology theories. 5.2. Other oriented theories.- VI. Functoriality. 6.1. Refined cobordism. 6.2. Intersection with a pseudo-divisor. 6.3. Intersection with a pseudo-divisor II. 6.4. A moving lemma. 6.5. Pull-back for l.c.i. morphisms. 6.6. Refined pull-back and refined intersections. VII. The universality of algebraic cobordism. 7.1. Statement of results. 7.2. Pull-back in Borel-Moore homology theories. 7.3. Universality 7.4. Some applications.- Appendix A: Resolution of singularities.- References.- Index.- Glossary of Notation.
Introduction.- I. Cobordism and oriented cohomology.- 1.1. Oriented cohomology theories. 1.2. Algebraic cobordism. 1.3. Relations with complex cobordism. - II. The definition of algebraic cobordism. 2.1. Oriented Borel-Moore functions. 2.2. Oriented functors of geometric type. 2.3. Some elementary properties. 2.4. The construction of algebraic cobordism. 2.5. Some computations in algebraic cobordism.- III. Fundamental properties of algebraic cobordism. 3.1. Divisor classes. 3.2. Localization. 3.3. Transversality. 3.4. Homotopy invariance. 3.5. The projective bundle formula. 3.6. The extended homotopy property. IV. Algebraic cobordism and the Lazard ring. 4.1. Weak homology and Chern classes. 4.2. Algebraic cobordism and K-theory. 4.3. The cobordism ring of a point. 4.4. Degree formulas. 4.5. Comparison with the Chow groups. V. Oriented Borel-Moore homology. 5.1. Oriented Borel-Moore homology theories. 5.2. Other oriented theories.- VI. Functoriality. 6.1. Refined cobordism. 6.2. Intersection with a pseudo-divisor. 6.3. Intersection with a pseudo-divisor II. 6.4. A moving lemma. 6.5. Pull-back for l.c.i. morphisms. 6.6. Refined pull-back and refined intersections. VII. The universality of algebraic cobordism. 7.1. Statement of results. 7.2. Pull-back in Borel-Moore homology theories. 7.3. Universality 7.4. Some applications.- Appendix A: Resolution of singularities.- References.- Index.- Glossary of Notation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497