Contents: V.A. Alexeev: Theorems about good divisors on log Fano varieties (case of index r > n - 2).- D. Arapura: Fano maps and fundamental groups.- A. Bertram, L. Ein, R. Lazarsfeld: Surjectivity of Gaussian maps for line bundles of large degree on curves.- V.I. Danilov: De Rham complex on toroidal variety.- I. Dolgachev, I. Reider: On rank 2 vector bundles with c21 = 10 and c2 = 3 on Enriques surfaces.- V.A. Iskovskih: Towards the problem of rationality of conic bundles.- M.M. Kapranov: On DG-modules over the De Rham complex and the vanishing cycles functor.- G. Kempf: More on computing invariants.- G. Kempf: Effective methods in invariant theory.- V.A. Kolyvagin: On the structure of the Shafarevich-Tate groups.- Vic.S. Kulikov: On the fundamental group of the complement of a hypersurface in Cn.- B. Moishezon, M. Teicher: Braid group technique in complex geometry, II: from arrangements of lines and conics to cuspidal curves.- D.Yu. Nogin: Notes on exceptional vector bundles and helices.- M. Saito: Hodge conjecture and mixed motives II.- C. Seeley, S. Yau: Algebraic methods in the study of simple-elliptic singularities.- R. Smith, R. Varley: Singularity theory applied to ***- divisors.- A.N. Tyurin: A slight generalization of the theorem of Mehta- Ramanathan.- F.L. Zak: Some properties of dual varieties and their applications in projective geometry.- Yu.G. Zarhin: Linear irreducible Lie algebras and Hodge structures.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.