Hebertt Sira-Ramírez, Carlos García Rodríguez, John Cortés Romero, Alberto Luviano Juárez
Algebraic Identification and Estimation Methods in Feedback Control Systems
Hebertt Sira-Ramírez, Carlos García Rodríguez, John Cortés Romero, Alberto Luviano Juárez
Algebraic Identification and Estimation Methods in Feedback Control Systems
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Algebraic Identification and Estimation Methods in FeedbackControl Systems presents a model-based algebraic approach toonline parameter and state estimation in uncertain dynamic feedbackcontrol systems. This approach evades the mathematical intricaciesof the traditional stochastic approach, proposing a directmodel-based scheme with several easy-to-implement computationaladvantages. The approach can be used with continuous and discrete,linear and nonlinear, mono-variable and multi-variable systems. Theestimators based on this approach are not of asymptotic nature, anddo not require any…mehr
Andere Kunden interessierten sich auch für
- Ligang WuSliding Mode Control of Uncertain Parameter-Switching Hybrid Systems155,99 €
- Magdi S. MahmoudAnalysis and Synthesis of Fault-Tolerant Control Systems155,99 €
- Arthur L. DexterMonitoring and Control of Information-Poor Systems159,99 €
- Stephen A. BillingsNonlinear System Identification180,99 €
- Hongli DongFiltering, Control and Fault Detection with Randomly Occurring Incomplete Information157,99 €
- Florin StoicanSet-Theoretic Fault-Tolerant Control in Multisensor Systems191,99 €
- Shuang CongControl of Quantum Systems185,99 €
-
-
-
Algebraic Identification and Estimation Methods in FeedbackControl Systems presents a model-based algebraic approach toonline parameter and state estimation in uncertain dynamic feedbackcontrol systems. This approach evades the mathematical intricaciesof the traditional stochastic approach, proposing a directmodel-based scheme with several easy-to-implement computationaladvantages. The approach can be used with continuous and discrete,linear and nonlinear, mono-variable and multi-variable systems. Theestimators based on this approach are not of asymptotic nature, anddo not require any statistical knowledge of the corrupting noisesto achieve good performance in a noisy environment. Theseestimators are fast, robust to structured perturbations, and easyto combine with classical or sophisticated control laws.
This book uses module theory, differential algebra, andoperational calculus in an easy-to-understand manner and alsodetails how to apply these in the context of feedback controlsystems. A wide variety of examples, including mechanical systems,power converters, electric motors, and chaotic systems, are alsoincluded to illustrate the algebraic methodology.
Key features:
Presents a radically new approach to online parameter and stateestimation.
Enables the reader to master the use and understand theconsequences of the highly theoretical differential algebraicviewpoint in control systems theory.
Includes examples in a variety of physical applications withexperimental results.
Covers the latest developments and applications.
Algebraic Identification and Estimation Methods in FeedbackControl Systems is a comprehensive reference for researchersand practitioners working in the area of automatic control, and isalso a useful source of information for graduate and undergraduatestudents.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
This book uses module theory, differential algebra, andoperational calculus in an easy-to-understand manner and alsodetails how to apply these in the context of feedback controlsystems. A wide variety of examples, including mechanical systems,power converters, electric motors, and chaotic systems, are alsoincluded to illustrate the algebraic methodology.
Key features:
Presents a radically new approach to online parameter and stateestimation.
Enables the reader to master the use and understand theconsequences of the highly theoretical differential algebraicviewpoint in control systems theory.
Includes examples in a variety of physical applications withexperimental results.
Covers the latest developments and applications.
Algebraic Identification and Estimation Methods in FeedbackControl Systems is a comprehensive reference for researchersand practitioners working in the area of automatic control, and isalso a useful source of information for graduate and undergraduatestudents.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Wiley Series in Dynamics and Control of Electromechanical Systems
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 392
- Erscheinungstermin: 12. Mai 2014
- Englisch
- Abmessung: 250mm x 175mm x 25mm
- Gewicht: 852g
- ISBN-13: 9781118730607
- ISBN-10: 1118730607
- Artikelnr.: 40720320
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Wiley Series in Dynamics and Control of Electromechanical Systems
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 392
- Erscheinungstermin: 12. Mai 2014
- Englisch
- Abmessung: 250mm x 175mm x 25mm
- Gewicht: 852g
- ISBN-13: 9781118730607
- ISBN-10: 1118730607
- Artikelnr.: 40720320
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
H. Sira-Ramírez obtained an Electrical Engineer's degree from the Universidad de Los Andes in Mérida (Venezuela) in 1970; an MSc in Electrical Engineering and an Electrical Engineer's degree in 1974, and a PhD in Electrical Engineering in 1977, all from the Massachusetts Institute of Technology (Cambridge, MA). Dr. Sira-Ramírez worked for 28 years at the Universidad de Los Andes, becoming an Emeritus Professor. Currently, he is a Titular Researcher in the Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) in Mexico City, Mexico. He is a co-author of five books on automatic control, and the author of over 460 technical articles in book chapters, credited journals, and international conferences. Dr. Sira-Ramírez is interested in the theoretical and practical aspects of feedback regulation of nonlinear systems, with special emphasis on variable structure feedback control, algebraic methods in automatic control, power electronics, and active disturbance rejection control. C. García-Rodríguez received a B.Eng. degree from the Technological Institute of Veracruz, Veracruz, Mexico in 2002, and Master's and Doctor of Science degrees from the Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico in 2005 and 2011, respectively, all in Electrical Engineering. He was with the Technological Institute for Higher Studies of Ecatepec, Edo. de México, in 2005. Since 2010, he has been a Professor at the Electronic and Mechatronic Institute, Technological University of Mixteca, Oaxaca, Mexico. He is currently also Coordinator of the Master's Program in Electronics with Option in Applied Intelligent Systems of this university. Dr. García-Rodríguez is a candidate member of the National System of Researchers and a member of the CONACYT Registry of Accredited Evaluators. His current research and teaching interests include control of electrical machines, power converters for variable-speed systems, power electronics, robust control, and algebraic identification. A. Luviano Juárez received a BS degree in Mechatronics Engineering from the National Polytechnic Institute (Mexico), an MSc in Automatic Control from the Department of Automatic Control at the Center of Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), and a PhD in Electrical Engineering from the Electrical Engineering Department at Cinvestav -IPN. Currently, he is a Professor at the National Polytechnic Institute - UPIITA in the Research and Postgraduate Section. His teaching and research interests include control of mechatronic systems, algebraic methods in estimation, identification and control, robotics, and related subjects. John Cortés-Romero, PhD is a Research Associate Professor in the Department of Electrical and Electronic Engineering at the National University of Colombia. During his tenure at the NationalUniversity, Professor Cortés-Romero served as the coordinator of the Industrial Automation Master's program. Professor Cortés-Romero received his BS in Electrical Engineering, MSc in Industrial Automation, and MSc in Mathematics from the National University of Colombia in 1995, 1999, and 2007, respectively. In 2007, he was selected for the prestigious OAS fellowship program and earned his PhD in Electrical Engineering from the Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico in 2011. He is the author of over 40 technical papers in journals and international conference proceedings. His main research areas include nonlinear control applications, active disturbance rejection control, algebraic identification and estimation methods in feedback control systems, and supervisory control of industrial processes.
Series Preface xiii
Preface xv
1 Introduction 1
1.1 Feedback Control of Dynamic Systems 2
1.1.1 Feedback 2
1.1.2 Why Do We Need Feedback? 3
1.2 The Parameter Identification Problem 3
1.2.1 Identifying a System 4
1.3 A Brief Survey on Parameter Identification 4
1.4 The State Estimation Problem 5
1.4.1 Observers 6
1.4.2 Reconstructing the State via Time Derivative Estimation 7
1.5 Algebraic Methods in Control Theory: Differences from Existing
Methodologies 8
1.6 Outline of the Book 9
References 12
2 Algebraic Parameter Identification in Linear Systems 15
2.1 Introduction 15
2.1.1 The Parameter-Estimation Problem in Linear Systems 16
2.2 Introductory Examples 17
2.2.1 Dragging an Unknown Mass in Open Loop 17
2.2.2 A Perturbed First-Order System 24
2.2.3 The Visual Servoing Problem 30
2.2.4 Balancing of the Plane Rotor 35
2.2.5 On the Control of the Linear Motor 38
2.2.6 Double-Bridge Buck Converter 42
2.2.7 Closed-Loop Behavior 43
2.2.8 Control of an unknown variable gain motor 47
2.2.9 Identifying Classical Controller Parameters 50
2.3 A Case Study Introducing a "Sentinel" Criterion 53
2.3.1 A Suspension System Model 54
2.4 Remarks 67
References 68
3 Algebraic Parameter Identification in Nonlinear Systems 71
3.1 Introduction 71
3.2 Algebraic Parameter Identification for Nonlinear Systems 72
3.2.1 Controlling an Uncertain Pendulum 74
3.2.2 A Block-Driving Problem 80
3.2.3 The Fully Actuated Rigid Body 84
3.2.4 Parameter Identification Under Sliding Motions 90
3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor 92
3.2.6 Identification and Control of a Convey Crane 96
3.2.7 Identification of a Magnetic Levitation System 103
3.3 An Alternative Construction of the System of Linear Equations 105
3.3.1 Genesio-Tesi Chaotic System 107
3.3.2 The Ueda Oscillator 108
3.3.3 Identification and Control of an Uncertain Brushless DC Motor 112
3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel
Pendulum 119
3.3.5 Algebraic Parameter Identification for Induction Motors 128
3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index
136
3.4 Remarks 141
References 141
4 Algebraic Parameter Identification in Discrete-Time Systems 145
4.1 Introduction 145
4.2 Algebraic Parameter Identification in Discrete-Time Systems 145
4.2.1 Main Purpose of the Chapter 146
4.2.2 Problem Formulation and Assumptions 147
4.2.3 An Introductory Example 148
4.2.4 Samuelson's Model of the National Economy 150
4.2.5 Heating of a Slab from Two Boundary Points 155
4.2.6 An Exact Backward Shift Reconstructor 157
4.3 A Nonlinear Filtering Scheme 160
4.3.1 Hénon System 161
4.3.2 A Hard Disk Drive 164
4.3.3 The Visual Servo Tracking Problem 166
4.3.4 A Shape Control Problem in a Rolling Mill 170
4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of
Exact Discretization 175
4.4 Algebraic Identification in Fast-Sampled Linear Systems 178
4.4.1 The Delta-Operator Approach: A Theoretical Framework 179
4.4.2 Delta-Transform Properties 181
4.4.3 A DC Motor Example 181
4.5 Remarks 188
References 188
5 State and Parameter Estimation in Linear Systems 191
5.1 Introduction 191
5.1.1 Signal Time Derivation Through the "Algebraic Derivative Method" 192
5.1.2 Observability of Nonlinear Systems 192
5.2 Fast State Estimation 193
5.2.1 An Elementary Second-Order Example 193
5.2.2 An Elementary Third-Order Example 194
5.2.3 A Control System Example 198
5.2.4 Control of a Perturbed Third-Order System 201
5.2.5 A Sinusoid Estimation Problem 203
5.2.6 Identification of Gravitational Wave Parameters 205
5.2.7 A Power Electronics Example 210
5.2.8 A Hydraulic Press 213
5.2.9 Identification and Control of a Plotter 218
5.3 Recovering Chaotically Encrypted Signals 222
5.3.1 State Estimation for a Lorenz System 227
5.3.2 State Estimation for Chen's System 229
5.3.3 State Estimation for Chua's Circuit 231
5.3.4 State Estimation for Rossler's System 232
5.3.5 State Estimation for the Hysteretic Circuit 234
5.3.6 Simultaneous Chaotic Encoding-Decoding with Singularity Avoidance 239
5.3.7 Discussion 240
5.4 Remarks 241
References 242
6 Control of Nonlinear Systems via Output Feedback 245
6.1 Introduction 245
6.2 Time-Derivative Calculations 246
6.2.1 An Introductory Example 247
6.2.2 Identifying a Switching Input 253
6.3 The Nonlinear Systems Case 255
6.3.1 Control of a Synchronous Generator 256
6.3.2 Control of a Multi-variable Nonlinear System 261
6.3.3 Experimental Results on a Mechanical System 267
6.4 Remarks 278
References 279
7 Miscellaneous Applications 281
7.1 Introduction 281
7.1.1 The Separately Excited DC Motor 282
7.1.2 Justification of the ETEDPOF Controller 285
7.1.3 A Sensorless Scheme Based on Fast Adaptive Observation 287
7.1.4 Control of the Boost Converter 292
7.2 Alternative Elimination of Initial Conditions 298
7.2.1 A Bounded Exponential Function 299
7.2.2 Correspondence in the Frequency Domain 300
7.2.3 A System of Second Order 301
7.3 Other Functions of Time for Parameter Estimation 304
7.3.1 A Mechanical System Example 304
7.3.2 A Derivative Approach to Demodulation 310
7.3.3 Time Derivatives via Parameter Identification 312
7.3.4 Example 314
7.4 An Algebraic Denoising Scheme 318
7.4.1 Example 321
7.4.2 Numerical Results 322
7.5 Remarks 325
References 326
Appendix A Parameter Identification in Linear Continuous Systems: A Module
Approach 329
A.1 Generalities on Linear Systems Identification 329
A.1.1 Example 330
A.1.2 Some Definitions and Results 330
A.1.3 Linear Identifiability 331
A.1.4 Structured Perturbations 333
A.1.5 The Frequency Domain Alternative 337
References 338
Appendix B Parameter Identification in Linear Discrete Systems: A Module
Approach 339
B.1 A Short Review of Module Theory over Principal Ideal Rings 339
B.1.1 Systems 340
B.1.2 Perturbations 340
B.1.3 Dynamics and Input-Output Systems 341
B.1.4 Transfer Matrices 341
B.1.5 Identifiability 342
B.1.6 An Algebraic Setting for Identifiability 342
B.1.7 Linear identifiability of transfer functions 344
B.1.8 Linear Identification of Perturbed Systems 345
B.1.9 Persistent Trajectories 347
References 348
Appendix C Simultaneous State and Parameter Estimation: An Algebraic
Approach 349
C.1 Rings, Fields and Extensions 349
C.2 Nonlinear Systems 350
C.2.1 Differential Flatness 351
C.2.2 Observability and Identifiability 352
C.2.3 Observability 352
C.2.4 Identifiable Parameters 352
C.2.5 Determinable Variables 352
C.3 Numerical Differentiation 353
C.3.1 Polynomial Time Signals 353
C.3.2 Analytic Time Signals 353
C.3.3 Noisy Signals 354
References 354
Appendix D Generalized Proportional Integral Control 357
D.1 Generalities on GPI Control 357
D.2 Generalization to MIMO Linear Systems 365
References 368
Index 369
Preface xv
1 Introduction 1
1.1 Feedback Control of Dynamic Systems 2
1.1.1 Feedback 2
1.1.2 Why Do We Need Feedback? 3
1.2 The Parameter Identification Problem 3
1.2.1 Identifying a System 4
1.3 A Brief Survey on Parameter Identification 4
1.4 The State Estimation Problem 5
1.4.1 Observers 6
1.4.2 Reconstructing the State via Time Derivative Estimation 7
1.5 Algebraic Methods in Control Theory: Differences from Existing
Methodologies 8
1.6 Outline of the Book 9
References 12
2 Algebraic Parameter Identification in Linear Systems 15
2.1 Introduction 15
2.1.1 The Parameter-Estimation Problem in Linear Systems 16
2.2 Introductory Examples 17
2.2.1 Dragging an Unknown Mass in Open Loop 17
2.2.2 A Perturbed First-Order System 24
2.2.3 The Visual Servoing Problem 30
2.2.4 Balancing of the Plane Rotor 35
2.2.5 On the Control of the Linear Motor 38
2.2.6 Double-Bridge Buck Converter 42
2.2.7 Closed-Loop Behavior 43
2.2.8 Control of an unknown variable gain motor 47
2.2.9 Identifying Classical Controller Parameters 50
2.3 A Case Study Introducing a "Sentinel" Criterion 53
2.3.1 A Suspension System Model 54
2.4 Remarks 67
References 68
3 Algebraic Parameter Identification in Nonlinear Systems 71
3.1 Introduction 71
3.2 Algebraic Parameter Identification for Nonlinear Systems 72
3.2.1 Controlling an Uncertain Pendulum 74
3.2.2 A Block-Driving Problem 80
3.2.3 The Fully Actuated Rigid Body 84
3.2.4 Parameter Identification Under Sliding Motions 90
3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor 92
3.2.6 Identification and Control of a Convey Crane 96
3.2.7 Identification of a Magnetic Levitation System 103
3.3 An Alternative Construction of the System of Linear Equations 105
3.3.1 Genesio-Tesi Chaotic System 107
3.3.2 The Ueda Oscillator 108
3.3.3 Identification and Control of an Uncertain Brushless DC Motor 112
3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel
Pendulum 119
3.3.5 Algebraic Parameter Identification for Induction Motors 128
3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index
136
3.4 Remarks 141
References 141
4 Algebraic Parameter Identification in Discrete-Time Systems 145
4.1 Introduction 145
4.2 Algebraic Parameter Identification in Discrete-Time Systems 145
4.2.1 Main Purpose of the Chapter 146
4.2.2 Problem Formulation and Assumptions 147
4.2.3 An Introductory Example 148
4.2.4 Samuelson's Model of the National Economy 150
4.2.5 Heating of a Slab from Two Boundary Points 155
4.2.6 An Exact Backward Shift Reconstructor 157
4.3 A Nonlinear Filtering Scheme 160
4.3.1 Hénon System 161
4.3.2 A Hard Disk Drive 164
4.3.3 The Visual Servo Tracking Problem 166
4.3.4 A Shape Control Problem in a Rolling Mill 170
4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of
Exact Discretization 175
4.4 Algebraic Identification in Fast-Sampled Linear Systems 178
4.4.1 The Delta-Operator Approach: A Theoretical Framework 179
4.4.2 Delta-Transform Properties 181
4.4.3 A DC Motor Example 181
4.5 Remarks 188
References 188
5 State and Parameter Estimation in Linear Systems 191
5.1 Introduction 191
5.1.1 Signal Time Derivation Through the "Algebraic Derivative Method" 192
5.1.2 Observability of Nonlinear Systems 192
5.2 Fast State Estimation 193
5.2.1 An Elementary Second-Order Example 193
5.2.2 An Elementary Third-Order Example 194
5.2.3 A Control System Example 198
5.2.4 Control of a Perturbed Third-Order System 201
5.2.5 A Sinusoid Estimation Problem 203
5.2.6 Identification of Gravitational Wave Parameters 205
5.2.7 A Power Electronics Example 210
5.2.8 A Hydraulic Press 213
5.2.9 Identification and Control of a Plotter 218
5.3 Recovering Chaotically Encrypted Signals 222
5.3.1 State Estimation for a Lorenz System 227
5.3.2 State Estimation for Chen's System 229
5.3.3 State Estimation for Chua's Circuit 231
5.3.4 State Estimation for Rossler's System 232
5.3.5 State Estimation for the Hysteretic Circuit 234
5.3.6 Simultaneous Chaotic Encoding-Decoding with Singularity Avoidance 239
5.3.7 Discussion 240
5.4 Remarks 241
References 242
6 Control of Nonlinear Systems via Output Feedback 245
6.1 Introduction 245
6.2 Time-Derivative Calculations 246
6.2.1 An Introductory Example 247
6.2.2 Identifying a Switching Input 253
6.3 The Nonlinear Systems Case 255
6.3.1 Control of a Synchronous Generator 256
6.3.2 Control of a Multi-variable Nonlinear System 261
6.3.3 Experimental Results on a Mechanical System 267
6.4 Remarks 278
References 279
7 Miscellaneous Applications 281
7.1 Introduction 281
7.1.1 The Separately Excited DC Motor 282
7.1.2 Justification of the ETEDPOF Controller 285
7.1.3 A Sensorless Scheme Based on Fast Adaptive Observation 287
7.1.4 Control of the Boost Converter 292
7.2 Alternative Elimination of Initial Conditions 298
7.2.1 A Bounded Exponential Function 299
7.2.2 Correspondence in the Frequency Domain 300
7.2.3 A System of Second Order 301
7.3 Other Functions of Time for Parameter Estimation 304
7.3.1 A Mechanical System Example 304
7.3.2 A Derivative Approach to Demodulation 310
7.3.3 Time Derivatives via Parameter Identification 312
7.3.4 Example 314
7.4 An Algebraic Denoising Scheme 318
7.4.1 Example 321
7.4.2 Numerical Results 322
7.5 Remarks 325
References 326
Appendix A Parameter Identification in Linear Continuous Systems: A Module
Approach 329
A.1 Generalities on Linear Systems Identification 329
A.1.1 Example 330
A.1.2 Some Definitions and Results 330
A.1.3 Linear Identifiability 331
A.1.4 Structured Perturbations 333
A.1.5 The Frequency Domain Alternative 337
References 338
Appendix B Parameter Identification in Linear Discrete Systems: A Module
Approach 339
B.1 A Short Review of Module Theory over Principal Ideal Rings 339
B.1.1 Systems 340
B.1.2 Perturbations 340
B.1.3 Dynamics and Input-Output Systems 341
B.1.4 Transfer Matrices 341
B.1.5 Identifiability 342
B.1.6 An Algebraic Setting for Identifiability 342
B.1.7 Linear identifiability of transfer functions 344
B.1.8 Linear Identification of Perturbed Systems 345
B.1.9 Persistent Trajectories 347
References 348
Appendix C Simultaneous State and Parameter Estimation: An Algebraic
Approach 349
C.1 Rings, Fields and Extensions 349
C.2 Nonlinear Systems 350
C.2.1 Differential Flatness 351
C.2.2 Observability and Identifiability 352
C.2.3 Observability 352
C.2.4 Identifiable Parameters 352
C.2.5 Determinable Variables 352
C.3 Numerical Differentiation 353
C.3.1 Polynomial Time Signals 353
C.3.2 Analytic Time Signals 353
C.3.3 Noisy Signals 354
References 354
Appendix D Generalized Proportional Integral Control 357
D.1 Generalities on GPI Control 357
D.2 Generalization to MIMO Linear Systems 365
References 368
Index 369
Series Preface xiii
Preface xv
1 Introduction 1
1.1 Feedback Control of Dynamic Systems 2
1.1.1 Feedback 2
1.1.2 Why Do We Need Feedback? 3
1.2 The Parameter Identification Problem 3
1.2.1 Identifying a System 4
1.3 A Brief Survey on Parameter Identification 4
1.4 The State Estimation Problem 5
1.4.1 Observers 6
1.4.2 Reconstructing the State via Time Derivative Estimation 7
1.5 Algebraic Methods in Control Theory: Differences from Existing
Methodologies 8
1.6 Outline of the Book 9
References 12
2 Algebraic Parameter Identification in Linear Systems 15
2.1 Introduction 15
2.1.1 The Parameter-Estimation Problem in Linear Systems 16
2.2 Introductory Examples 17
2.2.1 Dragging an Unknown Mass in Open Loop 17
2.2.2 A Perturbed First-Order System 24
2.2.3 The Visual Servoing Problem 30
2.2.4 Balancing of the Plane Rotor 35
2.2.5 On the Control of the Linear Motor 38
2.2.6 Double-Bridge Buck Converter 42
2.2.7 Closed-Loop Behavior 43
2.2.8 Control of an unknown variable gain motor 47
2.2.9 Identifying Classical Controller Parameters 50
2.3 A Case Study Introducing a "Sentinel" Criterion 53
2.3.1 A Suspension System Model 54
2.4 Remarks 67
References 68
3 Algebraic Parameter Identification in Nonlinear Systems 71
3.1 Introduction 71
3.2 Algebraic Parameter Identification for Nonlinear Systems 72
3.2.1 Controlling an Uncertain Pendulum 74
3.2.2 A Block-Driving Problem 80
3.2.3 The Fully Actuated Rigid Body 84
3.2.4 Parameter Identification Under Sliding Motions 90
3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor 92
3.2.6 Identification and Control of a Convey Crane 96
3.2.7 Identification of a Magnetic Levitation System 103
3.3 An Alternative Construction of the System of Linear Equations 105
3.3.1 Genesio-Tesi Chaotic System 107
3.3.2 The Ueda Oscillator 108
3.3.3 Identification and Control of an Uncertain Brushless DC Motor 112
3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel
Pendulum 119
3.3.5 Algebraic Parameter Identification for Induction Motors 128
3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index
136
3.4 Remarks 141
References 141
4 Algebraic Parameter Identification in Discrete-Time Systems 145
4.1 Introduction 145
4.2 Algebraic Parameter Identification in Discrete-Time Systems 145
4.2.1 Main Purpose of the Chapter 146
4.2.2 Problem Formulation and Assumptions 147
4.2.3 An Introductory Example 148
4.2.4 Samuelson's Model of the National Economy 150
4.2.5 Heating of a Slab from Two Boundary Points 155
4.2.6 An Exact Backward Shift Reconstructor 157
4.3 A Nonlinear Filtering Scheme 160
4.3.1 Hénon System 161
4.3.2 A Hard Disk Drive 164
4.3.3 The Visual Servo Tracking Problem 166
4.3.4 A Shape Control Problem in a Rolling Mill 170
4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of
Exact Discretization 175
4.4 Algebraic Identification in Fast-Sampled Linear Systems 178
4.4.1 The Delta-Operator Approach: A Theoretical Framework 179
4.4.2 Delta-Transform Properties 181
4.4.3 A DC Motor Example 181
4.5 Remarks 188
References 188
5 State and Parameter Estimation in Linear Systems 191
5.1 Introduction 191
5.1.1 Signal Time Derivation Through the "Algebraic Derivative Method" 192
5.1.2 Observability of Nonlinear Systems 192
5.2 Fast State Estimation 193
5.2.1 An Elementary Second-Order Example 193
5.2.2 An Elementary Third-Order Example 194
5.2.3 A Control System Example 198
5.2.4 Control of a Perturbed Third-Order System 201
5.2.5 A Sinusoid Estimation Problem 203
5.2.6 Identification of Gravitational Wave Parameters 205
5.2.7 A Power Electronics Example 210
5.2.8 A Hydraulic Press 213
5.2.9 Identification and Control of a Plotter 218
5.3 Recovering Chaotically Encrypted Signals 222
5.3.1 State Estimation for a Lorenz System 227
5.3.2 State Estimation for Chen's System 229
5.3.3 State Estimation for Chua's Circuit 231
5.3.4 State Estimation for Rossler's System 232
5.3.5 State Estimation for the Hysteretic Circuit 234
5.3.6 Simultaneous Chaotic Encoding-Decoding with Singularity Avoidance 239
5.3.7 Discussion 240
5.4 Remarks 241
References 242
6 Control of Nonlinear Systems via Output Feedback 245
6.1 Introduction 245
6.2 Time-Derivative Calculations 246
6.2.1 An Introductory Example 247
6.2.2 Identifying a Switching Input 253
6.3 The Nonlinear Systems Case 255
6.3.1 Control of a Synchronous Generator 256
6.3.2 Control of a Multi-variable Nonlinear System 261
6.3.3 Experimental Results on a Mechanical System 267
6.4 Remarks 278
References 279
7 Miscellaneous Applications 281
7.1 Introduction 281
7.1.1 The Separately Excited DC Motor 282
7.1.2 Justification of the ETEDPOF Controller 285
7.1.3 A Sensorless Scheme Based on Fast Adaptive Observation 287
7.1.4 Control of the Boost Converter 292
7.2 Alternative Elimination of Initial Conditions 298
7.2.1 A Bounded Exponential Function 299
7.2.2 Correspondence in the Frequency Domain 300
7.2.3 A System of Second Order 301
7.3 Other Functions of Time for Parameter Estimation 304
7.3.1 A Mechanical System Example 304
7.3.2 A Derivative Approach to Demodulation 310
7.3.3 Time Derivatives via Parameter Identification 312
7.3.4 Example 314
7.4 An Algebraic Denoising Scheme 318
7.4.1 Example 321
7.4.2 Numerical Results 322
7.5 Remarks 325
References 326
Appendix A Parameter Identification in Linear Continuous Systems: A Module
Approach 329
A.1 Generalities on Linear Systems Identification 329
A.1.1 Example 330
A.1.2 Some Definitions and Results 330
A.1.3 Linear Identifiability 331
A.1.4 Structured Perturbations 333
A.1.5 The Frequency Domain Alternative 337
References 338
Appendix B Parameter Identification in Linear Discrete Systems: A Module
Approach 339
B.1 A Short Review of Module Theory over Principal Ideal Rings 339
B.1.1 Systems 340
B.1.2 Perturbations 340
B.1.3 Dynamics and Input-Output Systems 341
B.1.4 Transfer Matrices 341
B.1.5 Identifiability 342
B.1.6 An Algebraic Setting for Identifiability 342
B.1.7 Linear identifiability of transfer functions 344
B.1.8 Linear Identification of Perturbed Systems 345
B.1.9 Persistent Trajectories 347
References 348
Appendix C Simultaneous State and Parameter Estimation: An Algebraic
Approach 349
C.1 Rings, Fields and Extensions 349
C.2 Nonlinear Systems 350
C.2.1 Differential Flatness 351
C.2.2 Observability and Identifiability 352
C.2.3 Observability 352
C.2.4 Identifiable Parameters 352
C.2.5 Determinable Variables 352
C.3 Numerical Differentiation 353
C.3.1 Polynomial Time Signals 353
C.3.2 Analytic Time Signals 353
C.3.3 Noisy Signals 354
References 354
Appendix D Generalized Proportional Integral Control 357
D.1 Generalities on GPI Control 357
D.2 Generalization to MIMO Linear Systems 365
References 368
Index 369
Preface xv
1 Introduction 1
1.1 Feedback Control of Dynamic Systems 2
1.1.1 Feedback 2
1.1.2 Why Do We Need Feedback? 3
1.2 The Parameter Identification Problem 3
1.2.1 Identifying a System 4
1.3 A Brief Survey on Parameter Identification 4
1.4 The State Estimation Problem 5
1.4.1 Observers 6
1.4.2 Reconstructing the State via Time Derivative Estimation 7
1.5 Algebraic Methods in Control Theory: Differences from Existing
Methodologies 8
1.6 Outline of the Book 9
References 12
2 Algebraic Parameter Identification in Linear Systems 15
2.1 Introduction 15
2.1.1 The Parameter-Estimation Problem in Linear Systems 16
2.2 Introductory Examples 17
2.2.1 Dragging an Unknown Mass in Open Loop 17
2.2.2 A Perturbed First-Order System 24
2.2.3 The Visual Servoing Problem 30
2.2.4 Balancing of the Plane Rotor 35
2.2.5 On the Control of the Linear Motor 38
2.2.6 Double-Bridge Buck Converter 42
2.2.7 Closed-Loop Behavior 43
2.2.8 Control of an unknown variable gain motor 47
2.2.9 Identifying Classical Controller Parameters 50
2.3 A Case Study Introducing a "Sentinel" Criterion 53
2.3.1 A Suspension System Model 54
2.4 Remarks 67
References 68
3 Algebraic Parameter Identification in Nonlinear Systems 71
3.1 Introduction 71
3.2 Algebraic Parameter Identification for Nonlinear Systems 72
3.2.1 Controlling an Uncertain Pendulum 74
3.2.2 A Block-Driving Problem 80
3.2.3 The Fully Actuated Rigid Body 84
3.2.4 Parameter Identification Under Sliding Motions 90
3.2.5 Control of an Uncertain Inverted Pendulum Driven by a DC Motor 92
3.2.6 Identification and Control of a Convey Crane 96
3.2.7 Identification of a Magnetic Levitation System 103
3.3 An Alternative Construction of the System of Linear Equations 105
3.3.1 Genesio-Tesi Chaotic System 107
3.3.2 The Ueda Oscillator 108
3.3.3 Identification and Control of an Uncertain Brushless DC Motor 112
3.3.4 Parameter Identification and Self-tuned Control for the Inertia Wheel
Pendulum 119
3.3.5 Algebraic Parameter Identification for Induction Motors 128
3.3.6 A Criterion to Determine the Estimator Convergence: The Error Index
136
3.4 Remarks 141
References 141
4 Algebraic Parameter Identification in Discrete-Time Systems 145
4.1 Introduction 145
4.2 Algebraic Parameter Identification in Discrete-Time Systems 145
4.2.1 Main Purpose of the Chapter 146
4.2.2 Problem Formulation and Assumptions 147
4.2.3 An Introductory Example 148
4.2.4 Samuelson's Model of the National Economy 150
4.2.5 Heating of a Slab from Two Boundary Points 155
4.2.6 An Exact Backward Shift Reconstructor 157
4.3 A Nonlinear Filtering Scheme 160
4.3.1 Hénon System 161
4.3.2 A Hard Disk Drive 164
4.3.3 The Visual Servo Tracking Problem 166
4.3.4 A Shape Control Problem in a Rolling Mill 170
4.3.5 Algebraic Frequency Identification of a Sinusoidal Signal by Means of
Exact Discretization 175
4.4 Algebraic Identification in Fast-Sampled Linear Systems 178
4.4.1 The Delta-Operator Approach: A Theoretical Framework 179
4.4.2 Delta-Transform Properties 181
4.4.3 A DC Motor Example 181
4.5 Remarks 188
References 188
5 State and Parameter Estimation in Linear Systems 191
5.1 Introduction 191
5.1.1 Signal Time Derivation Through the "Algebraic Derivative Method" 192
5.1.2 Observability of Nonlinear Systems 192
5.2 Fast State Estimation 193
5.2.1 An Elementary Second-Order Example 193
5.2.2 An Elementary Third-Order Example 194
5.2.3 A Control System Example 198
5.2.4 Control of a Perturbed Third-Order System 201
5.2.5 A Sinusoid Estimation Problem 203
5.2.6 Identification of Gravitational Wave Parameters 205
5.2.7 A Power Electronics Example 210
5.2.8 A Hydraulic Press 213
5.2.9 Identification and Control of a Plotter 218
5.3 Recovering Chaotically Encrypted Signals 222
5.3.1 State Estimation for a Lorenz System 227
5.3.2 State Estimation for Chen's System 229
5.3.3 State Estimation for Chua's Circuit 231
5.3.4 State Estimation for Rossler's System 232
5.3.5 State Estimation for the Hysteretic Circuit 234
5.3.6 Simultaneous Chaotic Encoding-Decoding with Singularity Avoidance 239
5.3.7 Discussion 240
5.4 Remarks 241
References 242
6 Control of Nonlinear Systems via Output Feedback 245
6.1 Introduction 245
6.2 Time-Derivative Calculations 246
6.2.1 An Introductory Example 247
6.2.2 Identifying a Switching Input 253
6.3 The Nonlinear Systems Case 255
6.3.1 Control of a Synchronous Generator 256
6.3.2 Control of a Multi-variable Nonlinear System 261
6.3.3 Experimental Results on a Mechanical System 267
6.4 Remarks 278
References 279
7 Miscellaneous Applications 281
7.1 Introduction 281
7.1.1 The Separately Excited DC Motor 282
7.1.2 Justification of the ETEDPOF Controller 285
7.1.3 A Sensorless Scheme Based on Fast Adaptive Observation 287
7.1.4 Control of the Boost Converter 292
7.2 Alternative Elimination of Initial Conditions 298
7.2.1 A Bounded Exponential Function 299
7.2.2 Correspondence in the Frequency Domain 300
7.2.3 A System of Second Order 301
7.3 Other Functions of Time for Parameter Estimation 304
7.3.1 A Mechanical System Example 304
7.3.2 A Derivative Approach to Demodulation 310
7.3.3 Time Derivatives via Parameter Identification 312
7.3.4 Example 314
7.4 An Algebraic Denoising Scheme 318
7.4.1 Example 321
7.4.2 Numerical Results 322
7.5 Remarks 325
References 326
Appendix A Parameter Identification in Linear Continuous Systems: A Module
Approach 329
A.1 Generalities on Linear Systems Identification 329
A.1.1 Example 330
A.1.2 Some Definitions and Results 330
A.1.3 Linear Identifiability 331
A.1.4 Structured Perturbations 333
A.1.5 The Frequency Domain Alternative 337
References 338
Appendix B Parameter Identification in Linear Discrete Systems: A Module
Approach 339
B.1 A Short Review of Module Theory over Principal Ideal Rings 339
B.1.1 Systems 340
B.1.2 Perturbations 340
B.1.3 Dynamics and Input-Output Systems 341
B.1.4 Transfer Matrices 341
B.1.5 Identifiability 342
B.1.6 An Algebraic Setting for Identifiability 342
B.1.7 Linear identifiability of transfer functions 344
B.1.8 Linear Identification of Perturbed Systems 345
B.1.9 Persistent Trajectories 347
References 348
Appendix C Simultaneous State and Parameter Estimation: An Algebraic
Approach 349
C.1 Rings, Fields and Extensions 349
C.2 Nonlinear Systems 350
C.2.1 Differential Flatness 351
C.2.2 Observability and Identifiability 352
C.2.3 Observability 352
C.2.4 Identifiable Parameters 352
C.2.5 Determinable Variables 352
C.3 Numerical Differentiation 353
C.3.1 Polynomial Time Signals 353
C.3.2 Analytic Time Signals 353
C.3.3 Noisy Signals 354
References 354
Appendix D Generalized Proportional Integral Control 357
D.1 Generalities on GPI Control 357
D.2 Generalization to MIMO Linear Systems 365
References 368
Index 369