Jetzt bewerten Jetzt bewerten
This book explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.
Introduction; Summary; Part I. Algebra: 1. Algebraic Poincaré complexes; 2. Algebraic normal complexes; 3. Algebraic bordism categories; 4. Categories over complexes; 5. Duality; 6. Simply connected assembly; 7. Derived product and Hom; 8. Local Poincaré duality; 9. Universal assembly; 10. The algebraic - theorem; 11. -sets; 12. Generalized homology theory; 13. Algebraic L-spectra; 14. The algebraic surgery exact sequence; 15. Connective L-theory; Part II. Topology: 16. The L-theory orientation of topology; 17. The total surgery obstruction; 18. The structure set; 19. Geometric Poincaré complexes; 20. The simply connected case; 21. Transfer; 22. Finite fundamental group; 23. Splitting; 24. Higher signatures; 25. The 4-periodic theory; 26. Surgery with coefficients; Appendices; Bibliography; Index.