One service methematics has rendered 'Et moi, ... , si j'avait su comment en revenir, je n'y serais point alle.' the human race. It has put common sense JulesVerne back where it belongs, on the topmost shelf next to the dusty canister labelled The series is divergent; therefore we may 'discarded nonsecse'. be able to do something with it. Eric T. Bell O.Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple…mehr
One service methematics has rendered 'Et moi, ... , si j'avait su comment en revenir, je n'y serais point alle.' the human race. It has put common sense JulesVerne back where it belongs, on the topmost shelf next to the dusty canister labelled The series is divergent; therefore we may 'discarded nonsecse'. be able to do something with it. Eric T. Bell O.Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered computer science ... '; 'One service category theory has rendered mathematics ... '. All arguable true. And all statements obtainable this way form part of the raison d'etre of this series.
Chpater 1 Kuhn's algorithm for algebraic equations.- 1. Triangulation and labelling.- 2. Complementary pivoting algorithm.- 3. Convergence, I.- 4. Convergence, II.- 2 Efficiency of Kuhn's algorithm.- 1. Error estimate.- 2. Cost estimate.- 3. Monotonicity problem.- 4. Results on monotonicity.- 3 Newton method and approximate zeros.- 1. Approximate zeros.- 2. Coefficients of polynomials.- 3. One step of Newton iteration.- 4. Conditions for approximate zeros.- 4 A complexity comparison of Kuhn's algorithm and Newton method.- 1. Smale's work on the complexity of Newton method.- 2. Set of bad polynomials and its volume estimate.- 3. Locate approximate zeros by Kuhn's algorithm.- 4. Some remarks.- 5 Incremental algorithms and cost theory.- 1. Incremental algorithms Ih,f.- 2. Euler's algorithm is of efficiency k.- 3. Generalized approximate zeros.- 4. Ek iteration.- 5. Cost theory of Ek as an Euler's algorithm.- 6. Incremental algorithms of efficiency k.- 6 Homotopy algorithms.- 1. Homotopies and Index Theorem.- 2. Degree and its invariance.- 3. Jacobian of polynomial mappings.- 4. Conditions for boundedness of solutions.- 7 Probabilistic discussion on zeros of polynomial mappings.- 1. Number of zeros of polynomial mappings.- 2. Isolated zeros.- 3. Locating zeros of analytic functions in bounded regions.- 8 Piecewise linear algorithms.- 1. Zeros of PL mapping and their indexes.- 2. PL approximations.- 3. PL homotopy algorithms work with probability one.- References.- Acknowledgments.
Chpater 1 Kuhn's algorithm for algebraic equations.- 1. Triangulation and labelling.- 2. Complementary pivoting algorithm.- 3. Convergence, I.- 4. Convergence, II.- 2 Efficiency of Kuhn's algorithm.- 1. Error estimate.- 2. Cost estimate.- 3. Monotonicity problem.- 4. Results on monotonicity.- 3 Newton method and approximate zeros.- 1. Approximate zeros.- 2. Coefficients of polynomials.- 3. One step of Newton iteration.- 4. Conditions for approximate zeros.- 4 A complexity comparison of Kuhn's algorithm and Newton method.- 1. Smale's work on the complexity of Newton method.- 2. Set of bad polynomials and its volume estimate.- 3. Locate approximate zeros by Kuhn's algorithm.- 4. Some remarks.- 5 Incremental algorithms and cost theory.- 1. Incremental algorithms Ih,f.- 2. Euler's algorithm is of efficiency k.- 3. Generalized approximate zeros.- 4. Ek iteration.- 5. Cost theory of Ek as an Euler's algorithm.- 6. Incremental algorithms of efficiency k.- 6 Homotopy algorithms.- 1. Homotopies and Index Theorem.- 2. Degree and its invariance.- 3. Jacobian of polynomial mappings.- 4. Conditions for boundedness of solutions.- 7 Probabilistic discussion on zeros of polynomial mappings.- 1. Number of zeros of polynomial mappings.- 2. Isolated zeros.- 3. Locating zeros of analytic functions in bounded regions.- 8 Piecewise linear algorithms.- 1. Zeros of PL mapping and their indexes.- 2. PL approximations.- 3. PL homotopy algorithms work with probability one.- References.- Acknowledgments.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497