This text covers the basics of algebraic number theory, including divisibility theory in principal ideal domains, the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.
This text covers the basics of algebraic number theory, including divisibility theory in principal ideal domains, the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Translator's Introduction Introduction Notations, Definitions, and Prerequisites 1. Principal ideal rings 2. Elements integral over a ring; elements algebraic over a field Appendix: The field of complex numbers is algebraically closed 3. Noetherian rings and Dedekind rings 4. Ideal classes and the unit theorem Appendix: The calculation of a volume 5. The splitting of prime ideals in an extension field 6. Galois extensions of number fields A supplement, without proofs Exercises Bibliography Index
Translator's Introduction Introduction Notations, Definitions, and Prerequisites 1. Principal ideal rings 2. Elements integral over a ring; elements algebraic over a field Appendix: The field of complex numbers is algebraically closed 3. Noetherian rings and Dedekind rings 4. Ideal classes and the unit theorem Appendix: The calculation of a volume 5. The splitting of prime ideals in an extension field 6. Galois extensions of number fields A supplement, without proofs Exercises Bibliography Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497