29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
15 °P sammeln
  • Broschiertes Buch

La capacité de l'analyse discriminante linéaire classique basée sur la décomposition de la valeur singulière généralisée (LDA/GSVD) se détériore lorsqu'il s'agit d'ensembles de données non étiquetées, car la LDA nécessite des entrées et des cibles prédéfinies. En outre, l'algorithme LDA/GSVD souffre d'un coût de calcul élevé en raison de ses calculs mathématiques complexes et de ses itérations. Pour résoudre ces problèmes, cette étude présente la carte auto-organisatrice (SOM) comme une nouvelle méthode d'étiquetage des ensembles de données, et le développement d'un algorithme basé sur un…mehr

Produktbeschreibung
La capacité de l'analyse discriminante linéaire classique basée sur la décomposition de la valeur singulière généralisée (LDA/GSVD) se détériore lorsqu'il s'agit d'ensembles de données non étiquetées, car la LDA nécessite des entrées et des cibles prédéfinies. En outre, l'algorithme LDA/GSVD souffre d'un coût de calcul élevé en raison de ses calculs mathématiques complexes et de ses itérations. Pour résoudre ces problèmes, cette étude présente la carte auto-organisatrice (SOM) comme une nouvelle méthode d'étiquetage des ensembles de données, et le développement d'un algorithme basé sur un réseau neuronal artificiel pour surmonter le coût de calcul de LDA/GSVD. Les résultats montrent que l'utilisation de SOM et ANN sont efficaces pour résoudre les problèmes de l'algorithme traditionnel LDA/GSVD.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Rolysent Paredes est membre de la faculté de l'université de Misamis à Ozamiz City, aux Philippines. Il est instructeur certifié par l'Académie Cisco. Il a plusieurs publications à son actif et a présenté des travaux de recherche sur l'exploration de données, l'intelligence artificielle, l'apprentissage automatique et les réseaux informatiques lors de diverses conférences internationales.