José L. Balcázar / Philip M. Long / Frank Stephan17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings
Algorithmic Learning Theory
17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings
Herausgegeben:Balcázar, José L.; Long, Philip M.; Stephan, Frank
José L. Balcázar / Philip M. Long / Frank Stephan17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings
Algorithmic Learning Theory
17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings
Herausgegeben:Balcázar, José L.; Long, Philip M.; Stephan, Frank
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Andere Kunden interessierten sich auch für
- Markus Hutter (Volume ed.) / Rocco A. Servedio / Eiji TakimotoAlgorithmic Learning Theory37,99 €
- Naoki Abe / Roni Khardon / Thomas Zeugmann (eds.)Algorithmic Learning Theory42,99 €
- Hiroki Arimura / Sanjay Jain / Arun Sharma (eds.)Algorithmic Learning Theory42,99 €
- David Helmbold / Bob Williamson (eds.)Computational Learning Theory83,99 €
- Shahar Mendelson (Volume ed.) / Alexander J. SmolaAdvanced Lectures on Machine Learning38,99 €
- Tapio Elomaa / Heikki Mannila / Hannu Toivonen (eds.)Machine Learning: ECML 200242,99 €
- Bernhard Schölkopf / Manfred K. Warmuth (Bearb.)Learning Theory and Kernel Machines85,99 €
-
-
-
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 4264
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11894841, 978-3-540-46649-9
- 2006
- Seitenzahl: 412
- Erscheinungstermin: 27. September 2006
- Englisch
- Abmessung: 235mm x 155mm x 23mm
- Gewicht: 576g
- ISBN-13: 9783540466499
- ISBN-10: 3540466495
- Artikelnr.: 20946436
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 4264
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11894841, 978-3-540-46649-9
- 2006
- Seitenzahl: 412
- Erscheinungstermin: 27. September 2006
- Englisch
- Abmessung: 235mm x 155mm x 23mm
- Gewicht: 576g
- ISBN-13: 9783540466499
- ISBN-10: 3540466495
- Artikelnr.: 20946436
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
José L. Balcázar, Universitat Politècnica de Catalunya, Barcelona, Spain / Philip M. Long, Google, Mountain View, CA, USA / Frank Stephan, National University of Singapore
Editors' Introduction.- Editors' Introduction.- Invited Contributions.- Solving Semi-infinite Linear Programs Using Boosting-Like Methods.- e-Science and the Semantic Web: A Symbiotic Relationship.- Spectral Norm in Learning Theory: Some Selected Topics.- Data-Driven Discovery Using Probabilistic Hidden Variable Models.- Reinforcement Learning and Apprenticeship Learning for Robotic Control.- Regular Contributions.- Learning Unions of ?(1)-Dimensional Rectangles.- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle.- Active Learning in the Non-realizable Case.- How Many Query Superpositions Are Needed to Learn?.- Teaching Memoryless Randomized Learners Without Feedback.- The Complexity of Learning SUBSEQ (A).- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data.- Learning and Extending Sublanguages.- Iterative Learning from Positive Data and Negative Counterexamples.- Towards a Better Understanding of Incremental Learning.- On Exact Learning from Random Walk.- Risk-Sensitive Online Learning.- Leading Strategies in Competitive On-Line Prediction.- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring.- General Discounting Versus Average Reward.- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection.- Is There an Elegant Universal Theory of Prediction?.- Learning Linearly Separable Languages.- Smooth Boosting Using an Information-Based Criterion.- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice.- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence.- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning.- Unsupervised Slow Subspace-Learning fromStationary Processes.- Learning-Related Complexity of Linear Ranking Functions.
Editors' Introduction.- Editors' Introduction.- Invited Contributions.- Solving Semi-infinite Linear Programs Using Boosting-Like Methods.- e-Science and the Semantic Web: A Symbiotic Relationship.- Spectral Norm in Learning Theory: Some Selected Topics.- Data-Driven Discovery Using Probabilistic Hidden Variable Models.- Reinforcement Learning and Apprenticeship Learning for Robotic Control.- Regular Contributions.- Learning Unions of ?(1)-Dimensional Rectangles.- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle.- Active Learning in the Non-realizable Case.- How Many Query Superpositions Are Needed to Learn?.- Teaching Memoryless Randomized Learners Without Feedback.- The Complexity of Learning SUBSEQ (A).- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data.- Learning and Extending Sublanguages.- Iterative Learning from Positive Data and Negative Counterexamples.- Towards a Better Understanding of Incremental Learning.- On Exact Learning from Random Walk.- Risk-Sensitive Online Learning.- Leading Strategies in Competitive On-Line Prediction.- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring.- General Discounting Versus Average Reward.- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection.- Is There an Elegant Universal Theory of Prediction?.- Learning Linearly Separable Languages.- Smooth Boosting Using an Information-Based Criterion.- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice.- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence.- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning.- Unsupervised Slow Subspace-Learning fromStationary Processes.- Learning-Related Complexity of Linear Ranking Functions.