This volume contains the papers presented at the 18th International Conf- ence on Algorithmic Learning Theory (ALT 2007), which was held in Sendai (Japan) during October 1-4, 2007. The main objective of the conference was to provide an interdisciplinary forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as query models, on-line learning, inductive inference, algorithmic forecasting, boosting, support vector machines, kernel methods, complexity and learning, reinforcement learning, - supervised learning and grammatical inference. The…mehr
This volume contains the papers presented at the 18th International Conf- ence on Algorithmic Learning Theory (ALT 2007), which was held in Sendai (Japan) during October 1-4, 2007. The main objective of the conference was to provide an interdisciplinary forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as query models, on-line learning, inductive inference, algorithmic forecasting, boosting, support vector machines, kernel methods, complexity and learning, reinforcement learning, - supervised learning and grammatical inference. The conference was co-located with the Tenth International Conference on Discovery Science (DS 2007). This volume includes 25 technical contributions that were selected from 50 submissions by the ProgramCommittee. It also contains descriptions of the ?ve invited talks of ALT and DS; longer versions of the DS papers are available in the proceedings of DS 2007. These invited talks were presented to the audience of both conferences in joint sessions.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 12164653, 978-3-540-75224-0
2007
Seitenzahl: 420
Erscheinungstermin: 17. September 2007
Englisch
Abmessung: 235mm x 155mm x 23mm
Gewicht: 633g
ISBN-13: 9783540752240
ISBN-10: 3540752242
Artikelnr.: 23112793
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Editors' Introduction.- Editors' Introduction.- Invited Papers.- A Theory of Similarity Functions for Learning and Clustering.- Machine Learning in Ecosystem Informatics.- Challenge for Info-plosion.- A Hilbert Space Embedding for Distributions.- Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity and Creativity.- Invited Papers.- Feasible Iteration of Feasible Learning Functionals.- Parallelism Increases Iterative Learning Power.- Prescribed Learning of R.E. Classes.- Learning in Friedberg Numberings.- Complexity Aspects of Learning.- Separating Models of Learning with Faulty Teachers.- Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations.- Parameterized Learnability of k-Juntas and Related Problems.- On Universal Transfer Learning.- Online Learning.- Tuning Bandit Algorithms in Stochastic Environments.- Following the Perturbed Leader to Gamble at Multi-armed Bandits.- Online Regression Competitive with Changing Predictors.- Unsupervised Learning.- Cluster Identification in Nearest-Neighbor Graphs.- Multiple Pass Streaming Algorithms for Learning Mixtures of Distributions in .- Language Learning.- Learning Efficiency of Very Simple Grammars from Positive Data.- Learning Rational Stochastic Tree Languages.- Query Learning.- One-Shot Learners Using Negative Counterexamples and Nearest Positive Examples.- Polynomial Time Algorithms for Learning k-Reversible Languages and Pattern Languages with Correction Queries.- Learning and Verifying Graphs Using Queries with a Focus on Edge Counting.- Exact Learning of Finite Unions of Graph Patterns from Queries.- Kernel-Based Learning.- Polynomial Summaries of Positive Semidefinite Kernels.- Learning Kernel Perceptrons on Noisy Data Using Random Projections.- Continuityof Performance Metrics for Thin Feature Maps.- Other Directions.- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability.- Pseudometrics for State Aggregation in Average Reward Markov Decision Processes.- On Calibration Error of Randomized Forecasting Algorithms.
Editors' Introduction.- Editors' Introduction.- Invited Papers.- A Theory of Similarity Functions for Learning and Clustering.- Machine Learning in Ecosystem Informatics.- Challenge for Info-plosion.- A Hilbert Space Embedding for Distributions.- Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity and Creativity.- Invited Papers.- Feasible Iteration of Feasible Learning Functionals.- Parallelism Increases Iterative Learning Power.- Prescribed Learning of R.E. Classes.- Learning in Friedberg Numberings.- Complexity Aspects of Learning.- Separating Models of Learning with Faulty Teachers.- Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations.- Parameterized Learnability of k-Juntas and Related Problems.- On Universal Transfer Learning.- Online Learning.- Tuning Bandit Algorithms in Stochastic Environments.- Following the Perturbed Leader to Gamble at Multi-armed Bandits.- Online Regression Competitive with Changing Predictors.- Unsupervised Learning.- Cluster Identification in Nearest-Neighbor Graphs.- Multiple Pass Streaming Algorithms for Learning Mixtures of Distributions in .- Language Learning.- Learning Efficiency of Very Simple Grammars from Positive Data.- Learning Rational Stochastic Tree Languages.- Query Learning.- One-Shot Learners Using Negative Counterexamples and Nearest Positive Examples.- Polynomial Time Algorithms for Learning k-Reversible Languages and Pattern Languages with Correction Queries.- Learning and Verifying Graphs Using Queries with a Focus on Edge Counting.- Exact Learning of Finite Unions of Graph Patterns from Queries.- Kernel-Based Learning.- Polynomial Summaries of Positive Semidefinite Kernels.- Learning Kernel Perceptrons on Noisy Data Using Random Projections.- Continuityof Performance Metrics for Thin Feature Maps.- Other Directions.- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability.- Pseudometrics for State Aggregation in Average Reward Markov Decision Processes.- On Calibration Error of Randomized Forecasting Algorithms.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826