49,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

In der automatischen Spracherkennung benutzt man zur Erkennung phonetischer Muster sogenannte Hidden Markov Models, deren Parameter mit Hilfe digital aufgezeichneter sprachlicher Äußerungen trainiert werden. Dieses Werk befasst sich mit der automatischen Übersetzung einer gegebenen phonetischen Beschreibung in eine möglichst genau modellierende Folge von HMMs aus einer gegebenen Menge von Baustein-HMM s, die neben Triphon-, Biphon- und Monophon-Modellen auch Ganzwortmodelle und Phonemmodelle mit weiterreichenden Kontexten enthalten kann. Für praktische Anwendungen der Spracherkennung ist es…mehr

Produktbeschreibung
In der automatischen Spracherkennung benutzt man zur
Erkennung phonetischer Muster sogenannte Hidden
Markov Models, deren Parameter mit Hilfe digital
aufgezeichneter sprachlicher Äußerungen trainiert werden.
Dieses Werk befasst sich mit der automatischen
Übersetzung einer gegebenen phonetischen Beschreibung
in eine möglichst genau modellierende Folge von HMMs
aus einer gegebenen Menge von Baustein-HMM s, die
neben Triphon-, Biphon- und Monophon-Modellen auch
Ganzwortmodelle und Phonemmodelle mit
weiterreichenden Kontexten enthalten kann. Für
praktische Anwendungen der Spracherkennung ist es
wichtig, dass die Modellierung so genau wie mit dem
vorhandenen Material möglich erfolgt. In manchen
Fällen kommt hinzu, dass die Phonetik-HMM-Übersetzung
sehr schnell geschehen muss, um die mit automatischer
Spracherkennung häufig verbundenen Wartezeiten so
weit wie möglich abzukürzen.
Das Buch richtet sich an Entwickler, Programmierer
und Interessierte aus dem Sprachverarbeitungssektor.
Autorenporträt
10/01-09/07:Studium der Wirtschaftsmathematik an der Katholischen
Universität Eichstätt-Ingolstadt
10/07-10/08:Promotion im Fach Informatik und Mitarbeiter am
SYNOPS Projekt von Prof. Dr. Robert Lorenz an der Universität
Eichstätt-Ingolstadt
10/08-heute:Fortsetzung o.g. Tätigkeit an der Universität Augsburg