Introduction
Author's preface
Part I. Elementary Trigonometry: 1. Definitions
Part II. Finite Differences: 2. Definitions and fundamental formulae
3. Interpolation for equal intervals
4. Interpolation for unequal intervals
5. Central differences
6. Inverse interpolation
7. Summation
8. Miscellaneous theorems
Part III. Functions and Limits: 9. Algebraic functions
Part IV. Differential Calculus: 10. Definitions, standard forms, successive differentiation
11. Expansions
12. Maxima and minima
13. Miscellaneous theorems
Part V. Integral Calculus: 14. Definitions and standard forms
15. More difficult integrals, integration by parts
16. Definite integrals, areas, miscellaneous theorems
17. Approximate integration
Part VI. Probability: 18. Numerical definitions of probability
19. Mean value. The application of the calculus to the solution of questions in probability
Miscellaneous examples
Answers to the examples
Index.