Stanley I. Sandler
An Introduction to Applied Statistical Thermodynamics
Stanley I. Sandler
An Introduction to Applied Statistical Thermodynamics
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other…mehr
Andere Kunden interessierten sich auch für
- J. J. Zuckerman / A. P. Hagen (Hgg.)Inorganic Reactions and Methods, the Formation of Bonds to Group Vib (O, S, Se, Te, Po) Elements (Part 1)688,99 €
- J. J. Zuckerman / A. D. Norman (Hgg.)Inorganic Reactions and Methods, the Formation of Bonds to O, S, Se, Te, Po (Part 2)730,99 €
- J. J. Zuckerman (Hrsg.)Inorganic Reactions and Methods, the Formation of Bonds to Transition and Inner-Transition Metals697,99 €
- J. J. Zuckerman / A. P. Hagen (Hgg.)Inorganic Reactions and Methods, the Formation of Bonds to C, Si, Ge, Sn, PB (Part 1)730,99 €
- Simon AldridgeThe Group 13 Metals Aluminium, Gallium, Indium and Thallium342,99 €
- M. H. Chisholm (Hrsg.)Early Transition Metal Clusters with Pi-Donor Ligands427,99 €
- Kenneth D. Karlin / Kenneth D. Karlin (eds.)Progress in Inorganic Chemistry, Volume 53318,99 €
-
-
-
One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other calculations. The purpose of this text is to provide a readable introduction to statistical thermodynamics, show its utility and the way the results obtained lead to useful generalisations for practical application. The text also illustrates the difficulties that arise in the statistical thermodynamics of dense fluids as seen in the discussion of liquids.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 368
- Erscheinungstermin: 16. November 2010
- Englisch
- Abmessung: 255mm x 205mm x 17mm
- Gewicht: 577g
- ISBN-13: 9780470913475
- ISBN-10: 0470913479
- Artikelnr.: 30363310
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 368
- Erscheinungstermin: 16. November 2010
- Englisch
- Abmessung: 255mm x 205mm x 17mm
- Gewicht: 577g
- ISBN-13: 9780470913475
- ISBN-10: 0470913479
- Artikelnr.: 30363310
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
STANLEY I. SANDLER is the H. B. du Pont Professor of Chemical Engineering at the University of Delaware as well as professor of chemistry and biochemistry. He is also the founding director of its Center for Molecular and Engineering Thermodynamics. In addition to this book, Sandler is the author of 235 research papers and a monograph, and is the editor of a book on thermodynamic modeling and five conference proceedings. He earned his B.Ch.E. degree in 1962 from the City College of New York, and his Ph.D. in chemical engineering from the University of Minnesota in 1966.
1. Introduction to Statistical Thermodynamics.
1.1 Probabistic Description.
1.2 Macrostates and Microstates.
1.3 Quantum Mechanics Description of Microstates.
1.4 The Postulates of Statistical Mechanics.
1.5 The Boltzmann Energy Distribution.
2. The Canonical Partition Function.
2.1 Some Properties of the Canonical Partition Function.
2.2 Relationship of the Canonical Partition Function to Thermodynamic
Properties.
2.3 Canonical Partition Function for a Molecule with Several Independent
Energy Modes.
2.4 Canonical Partition Function for a Collection of Noninteracting
Identical Atoms.
Problems.
3. The Ideal Monatomic Gas.
3.1 Canonical Partition Function for the Ideal Monatomic Gas.
3.2 Identification of b as 1/kT.
3.3 General Relationships of the Canonical Partition Function to Other
Thermodynamic Quantities.
3.4 The Thermodynamic Properties of the Ideal Monatomic Gas.
3.5 Energy Fluctuations in the Canonical Ensemble.
3.6 The Gibbs Entropy Equation.
3.7 Translational State Degeneracy.
3.8 Distinguishability, Indistinguishability and the Gibbs' Paradox.
3.9 A Classical Mechanics - Quantum Mechanics Comparison: The
Maxwell-Boltzmann Distribution of Velocities.
Problems.
4. Ideal Polyatomic Gas.
4.1 The Partition Function for an Ideal Diatomic Gas.
4.2 The Thermodynamic Properties of the Ideal Diatomic Gas.
4.3 The Partition Function for an Ideal Polyatomic Gas.
4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas.
4.5 The Heat Capacities of Ideal Gases.
4.6 Normal Mode Analysis: the Vibrations of a Linear Triatomic Molecule.
Problems.
5. Chemical Reactions in Ideal Gases.
5.1 The Non-Reacting Ideal Gas Mixture.
5.2 Partition Function of a Reacting Ideal Chemical Mixture.
5.3 Three Different Derivations of the Chemical Equilibrium Constant in an
Ideal Gas Mixture.
5.4 Fluctuations in a Chemically Reacting System.
5.5 The Chemically Reacting Gas Mixture. The General Case.
5.6 An Example. The Ionization of Argon.
Problems.
6. Other Partition Functions.
6.1 The Microcanonical Ensemble.
6.2 The Grand Canonical Ensemble.
6.3 The Isobaric-Isothermal Ensemble.
6.4 The Restricted Grand or Semi Grand Canonical Ensemble.
6.5 Comments on the Use of Different Ensembles.
Problems.
7. Interacting Molecules in a Gas.
7.1 The Configuration Integral.
7.2 Thermodynamic Properties from the Configuration Integral.
7.3 The Pairwise Additivity Assumption.
7.4 Mayer Cluster Function and Irreducible Integrals.
7.5 The Virial Equation of State.
7.6 The Virial Equation of State for Polyatomic Molecules.
7.7 Thermodynamic Properties from the Virial Equation of State.
7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical
Ensemble.
7.9 Range of Applicability of the Virial Equation.
Problems.
8. Intermolecular Potentials and the Evaluation of the Second Virial
Coefficient.
8.1 Interaction Potentials for Spherical Molecules.
8.2 Interaction Potentials Between Unlike Atoms.
8.3 Interaction Potentials for Nonspherical Molecules.
8.4 Engineering Applications/Implications of the Virial Equation of State.
Problems.
9. Monatomic Crystals.
9.1 The Einstein Model of a Crystal.
9.2 The Debye Model of a Crystal.
9.3 Test of the Einstein and Debye Models for a Crystal.
9.4 Sublimation Pressures of Crystals.
9.5 A Comment of the Third Law of Thermodynamics.
Problems.
10. Simple Lattice Models of Fluids.
10.1 Introduction.
10.2 Development of Equations of State from Lattice Theory.
10.3 Activity Coefficient Models for Similar Size Molecules from Lattice
Theory.
10.4 Flory-Huggins and Other Models for Polymer Systems.
10.5 The Ising Model.
Problems.
11. Interacting Molecules in a Dense Fluid. Configurational Distribution
Functions.
11.1 Reduced Spatial Probability Density Functions.
11.2 Thermodynamic Properties from the Pair Correlation Function.
11.3 The Pair Correlation Function (Radial Distribution Function) at Low
Density.
11.4 Methods of Determination of the Pair Correlation Function at High
Density
11.5 Fluctuations in the Number of Particles and the Compressibility
Equation
11.6 Determination of the Radial Distribution Function of Fluids using
Coherent X-ray or Neutron Scattering.
11.7 Determination of the Radial Distribution Functions of Molecular
Liquids.
11.8 Determination of the Coordination Number from the Radial Distribution
Function.
11.9 Determination of the Radial Distribution Function of Colloids and
Proteins.
Problems.
12. Integral Equation Theories for the Radial Distribution Function.
12.1 The Potential of Mean Force.
12.2 The Kirkwood Superposition Approximation.
12.3 The Ornstein-Zernike Equation.
12.4 Closures for the Ornstein-Zernike Equation.
12.5 The Percus-Yevick Equation of State.
12.6 The Radial Distribution Function and Thermodynamic Properties of
Mixtures.
12.7 The Potential of Mean Force.
12.8 Osmotic Pressure and the Potential of Mean Force for Protein and
Colloidal Solutions.
Problems.
13. Computer Simulation.
13.1 Introduction to Molecular Level Simulation.
13.2 Thermodynamic Properties from Molecular Simulation.
13.3 Monte Carlo Simulation.
13.4 Molecular Dynamics Simulation.
Problems.
14. Perturbation Theory.
14.1 Perturbation Theory for the Square-Well Potential.
14.2 First Order Barker-Henderson Perturbation Theory.
14.3 Second Order Perturbation Theory.
14.4 Perturbation Theory Using Other Potentials.
14.5 Engineering Applications of Perturbation Theory.
Problems.
15. Debye-Hückel Theory of Electrolyte Solutions.
15.1 Solutions Containing Ions (and electrons).
15.2 Debye-Hückel Theory.
15.3 The Mean Ionic Activity Coefficient.
Problems.
16. The Derivation of Thermodynamic Models from the Generalized van der
Waals
Partition Function.
16.1 The Statistical Mechanical Background.
16.2 Application of the Generalized van der Waals Partition Function to
Pure Fluids.
16.3 Equation of State for Mixtures from the Generalized van der Waals
Partition Function.
16.4 Activity Coefficient Models from the Generalized van der Waals
Partition Function.
16.5 Chain Molecules and Polymers.
16.6 Hydrogen-bonding and Associating Fluids.
Problems.
1.1 Probabistic Description.
1.2 Macrostates and Microstates.
1.3 Quantum Mechanics Description of Microstates.
1.4 The Postulates of Statistical Mechanics.
1.5 The Boltzmann Energy Distribution.
2. The Canonical Partition Function.
2.1 Some Properties of the Canonical Partition Function.
2.2 Relationship of the Canonical Partition Function to Thermodynamic
Properties.
2.3 Canonical Partition Function for a Molecule with Several Independent
Energy Modes.
2.4 Canonical Partition Function for a Collection of Noninteracting
Identical Atoms.
Problems.
3. The Ideal Monatomic Gas.
3.1 Canonical Partition Function for the Ideal Monatomic Gas.
3.2 Identification of b as 1/kT.
3.3 General Relationships of the Canonical Partition Function to Other
Thermodynamic Quantities.
3.4 The Thermodynamic Properties of the Ideal Monatomic Gas.
3.5 Energy Fluctuations in the Canonical Ensemble.
3.6 The Gibbs Entropy Equation.
3.7 Translational State Degeneracy.
3.8 Distinguishability, Indistinguishability and the Gibbs' Paradox.
3.9 A Classical Mechanics - Quantum Mechanics Comparison: The
Maxwell-Boltzmann Distribution of Velocities.
Problems.
4. Ideal Polyatomic Gas.
4.1 The Partition Function for an Ideal Diatomic Gas.
4.2 The Thermodynamic Properties of the Ideal Diatomic Gas.
4.3 The Partition Function for an Ideal Polyatomic Gas.
4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas.
4.5 The Heat Capacities of Ideal Gases.
4.6 Normal Mode Analysis: the Vibrations of a Linear Triatomic Molecule.
Problems.
5. Chemical Reactions in Ideal Gases.
5.1 The Non-Reacting Ideal Gas Mixture.
5.2 Partition Function of a Reacting Ideal Chemical Mixture.
5.3 Three Different Derivations of the Chemical Equilibrium Constant in an
Ideal Gas Mixture.
5.4 Fluctuations in a Chemically Reacting System.
5.5 The Chemically Reacting Gas Mixture. The General Case.
5.6 An Example. The Ionization of Argon.
Problems.
6. Other Partition Functions.
6.1 The Microcanonical Ensemble.
6.2 The Grand Canonical Ensemble.
6.3 The Isobaric-Isothermal Ensemble.
6.4 The Restricted Grand or Semi Grand Canonical Ensemble.
6.5 Comments on the Use of Different Ensembles.
Problems.
7. Interacting Molecules in a Gas.
7.1 The Configuration Integral.
7.2 Thermodynamic Properties from the Configuration Integral.
7.3 The Pairwise Additivity Assumption.
7.4 Mayer Cluster Function and Irreducible Integrals.
7.5 The Virial Equation of State.
7.6 The Virial Equation of State for Polyatomic Molecules.
7.7 Thermodynamic Properties from the Virial Equation of State.
7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical
Ensemble.
7.9 Range of Applicability of the Virial Equation.
Problems.
8. Intermolecular Potentials and the Evaluation of the Second Virial
Coefficient.
8.1 Interaction Potentials for Spherical Molecules.
8.2 Interaction Potentials Between Unlike Atoms.
8.3 Interaction Potentials for Nonspherical Molecules.
8.4 Engineering Applications/Implications of the Virial Equation of State.
Problems.
9. Monatomic Crystals.
9.1 The Einstein Model of a Crystal.
9.2 The Debye Model of a Crystal.
9.3 Test of the Einstein and Debye Models for a Crystal.
9.4 Sublimation Pressures of Crystals.
9.5 A Comment of the Third Law of Thermodynamics.
Problems.
10. Simple Lattice Models of Fluids.
10.1 Introduction.
10.2 Development of Equations of State from Lattice Theory.
10.3 Activity Coefficient Models for Similar Size Molecules from Lattice
Theory.
10.4 Flory-Huggins and Other Models for Polymer Systems.
10.5 The Ising Model.
Problems.
11. Interacting Molecules in a Dense Fluid. Configurational Distribution
Functions.
11.1 Reduced Spatial Probability Density Functions.
11.2 Thermodynamic Properties from the Pair Correlation Function.
11.3 The Pair Correlation Function (Radial Distribution Function) at Low
Density.
11.4 Methods of Determination of the Pair Correlation Function at High
Density
11.5 Fluctuations in the Number of Particles and the Compressibility
Equation
11.6 Determination of the Radial Distribution Function of Fluids using
Coherent X-ray or Neutron Scattering.
11.7 Determination of the Radial Distribution Functions of Molecular
Liquids.
11.8 Determination of the Coordination Number from the Radial Distribution
Function.
11.9 Determination of the Radial Distribution Function of Colloids and
Proteins.
Problems.
12. Integral Equation Theories for the Radial Distribution Function.
12.1 The Potential of Mean Force.
12.2 The Kirkwood Superposition Approximation.
12.3 The Ornstein-Zernike Equation.
12.4 Closures for the Ornstein-Zernike Equation.
12.5 The Percus-Yevick Equation of State.
12.6 The Radial Distribution Function and Thermodynamic Properties of
Mixtures.
12.7 The Potential of Mean Force.
12.8 Osmotic Pressure and the Potential of Mean Force for Protein and
Colloidal Solutions.
Problems.
13. Computer Simulation.
13.1 Introduction to Molecular Level Simulation.
13.2 Thermodynamic Properties from Molecular Simulation.
13.3 Monte Carlo Simulation.
13.4 Molecular Dynamics Simulation.
Problems.
14. Perturbation Theory.
14.1 Perturbation Theory for the Square-Well Potential.
14.2 First Order Barker-Henderson Perturbation Theory.
14.3 Second Order Perturbation Theory.
14.4 Perturbation Theory Using Other Potentials.
14.5 Engineering Applications of Perturbation Theory.
Problems.
15. Debye-Hückel Theory of Electrolyte Solutions.
15.1 Solutions Containing Ions (and electrons).
15.2 Debye-Hückel Theory.
15.3 The Mean Ionic Activity Coefficient.
Problems.
16. The Derivation of Thermodynamic Models from the Generalized van der
Waals
Partition Function.
16.1 The Statistical Mechanical Background.
16.2 Application of the Generalized van der Waals Partition Function to
Pure Fluids.
16.3 Equation of State for Mixtures from the Generalized van der Waals
Partition Function.
16.4 Activity Coefficient Models from the Generalized van der Waals
Partition Function.
16.5 Chain Molecules and Polymers.
16.6 Hydrogen-bonding and Associating Fluids.
Problems.
1. Introduction to Statistical Thermodynamics.
1.1 Probabistic Description.
1.2 Macrostates and Microstates.
1.3 Quantum Mechanics Description of Microstates.
1.4 The Postulates of Statistical Mechanics.
1.5 The Boltzmann Energy Distribution.
2. The Canonical Partition Function.
2.1 Some Properties of the Canonical Partition Function.
2.2 Relationship of the Canonical Partition Function to Thermodynamic
Properties.
2.3 Canonical Partition Function for a Molecule with Several Independent
Energy Modes.
2.4 Canonical Partition Function for a Collection of Noninteracting
Identical Atoms.
Problems.
3. The Ideal Monatomic Gas.
3.1 Canonical Partition Function for the Ideal Monatomic Gas.
3.2 Identification of b as 1/kT.
3.3 General Relationships of the Canonical Partition Function to Other
Thermodynamic Quantities.
3.4 The Thermodynamic Properties of the Ideal Monatomic Gas.
3.5 Energy Fluctuations in the Canonical Ensemble.
3.6 The Gibbs Entropy Equation.
3.7 Translational State Degeneracy.
3.8 Distinguishability, Indistinguishability and the Gibbs' Paradox.
3.9 A Classical Mechanics - Quantum Mechanics Comparison: The
Maxwell-Boltzmann Distribution of Velocities.
Problems.
4. Ideal Polyatomic Gas.
4.1 The Partition Function for an Ideal Diatomic Gas.
4.2 The Thermodynamic Properties of the Ideal Diatomic Gas.
4.3 The Partition Function for an Ideal Polyatomic Gas.
4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas.
4.5 The Heat Capacities of Ideal Gases.
4.6 Normal Mode Analysis: the Vibrations of a Linear Triatomic Molecule.
Problems.
5. Chemical Reactions in Ideal Gases.
5.1 The Non-Reacting Ideal Gas Mixture.
5.2 Partition Function of a Reacting Ideal Chemical Mixture.
5.3 Three Different Derivations of the Chemical Equilibrium Constant in an
Ideal Gas Mixture.
5.4 Fluctuations in a Chemically Reacting System.
5.5 The Chemically Reacting Gas Mixture. The General Case.
5.6 An Example. The Ionization of Argon.
Problems.
6. Other Partition Functions.
6.1 The Microcanonical Ensemble.
6.2 The Grand Canonical Ensemble.
6.3 The Isobaric-Isothermal Ensemble.
6.4 The Restricted Grand or Semi Grand Canonical Ensemble.
6.5 Comments on the Use of Different Ensembles.
Problems.
7. Interacting Molecules in a Gas.
7.1 The Configuration Integral.
7.2 Thermodynamic Properties from the Configuration Integral.
7.3 The Pairwise Additivity Assumption.
7.4 Mayer Cluster Function and Irreducible Integrals.
7.5 The Virial Equation of State.
7.6 The Virial Equation of State for Polyatomic Molecules.
7.7 Thermodynamic Properties from the Virial Equation of State.
7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical
Ensemble.
7.9 Range of Applicability of the Virial Equation.
Problems.
8. Intermolecular Potentials and the Evaluation of the Second Virial
Coefficient.
8.1 Interaction Potentials for Spherical Molecules.
8.2 Interaction Potentials Between Unlike Atoms.
8.3 Interaction Potentials for Nonspherical Molecules.
8.4 Engineering Applications/Implications of the Virial Equation of State.
Problems.
9. Monatomic Crystals.
9.1 The Einstein Model of a Crystal.
9.2 The Debye Model of a Crystal.
9.3 Test of the Einstein and Debye Models for a Crystal.
9.4 Sublimation Pressures of Crystals.
9.5 A Comment of the Third Law of Thermodynamics.
Problems.
10. Simple Lattice Models of Fluids.
10.1 Introduction.
10.2 Development of Equations of State from Lattice Theory.
10.3 Activity Coefficient Models for Similar Size Molecules from Lattice
Theory.
10.4 Flory-Huggins and Other Models for Polymer Systems.
10.5 The Ising Model.
Problems.
11. Interacting Molecules in a Dense Fluid. Configurational Distribution
Functions.
11.1 Reduced Spatial Probability Density Functions.
11.2 Thermodynamic Properties from the Pair Correlation Function.
11.3 The Pair Correlation Function (Radial Distribution Function) at Low
Density.
11.4 Methods of Determination of the Pair Correlation Function at High
Density
11.5 Fluctuations in the Number of Particles and the Compressibility
Equation
11.6 Determination of the Radial Distribution Function of Fluids using
Coherent X-ray or Neutron Scattering.
11.7 Determination of the Radial Distribution Functions of Molecular
Liquids.
11.8 Determination of the Coordination Number from the Radial Distribution
Function.
11.9 Determination of the Radial Distribution Function of Colloids and
Proteins.
Problems.
12. Integral Equation Theories for the Radial Distribution Function.
12.1 The Potential of Mean Force.
12.2 The Kirkwood Superposition Approximation.
12.3 The Ornstein-Zernike Equation.
12.4 Closures for the Ornstein-Zernike Equation.
12.5 The Percus-Yevick Equation of State.
12.6 The Radial Distribution Function and Thermodynamic Properties of
Mixtures.
12.7 The Potential of Mean Force.
12.8 Osmotic Pressure and the Potential of Mean Force for Protein and
Colloidal Solutions.
Problems.
13. Computer Simulation.
13.1 Introduction to Molecular Level Simulation.
13.2 Thermodynamic Properties from Molecular Simulation.
13.3 Monte Carlo Simulation.
13.4 Molecular Dynamics Simulation.
Problems.
14. Perturbation Theory.
14.1 Perturbation Theory for the Square-Well Potential.
14.2 First Order Barker-Henderson Perturbation Theory.
14.3 Second Order Perturbation Theory.
14.4 Perturbation Theory Using Other Potentials.
14.5 Engineering Applications of Perturbation Theory.
Problems.
15. Debye-Hückel Theory of Electrolyte Solutions.
15.1 Solutions Containing Ions (and electrons).
15.2 Debye-Hückel Theory.
15.3 The Mean Ionic Activity Coefficient.
Problems.
16. The Derivation of Thermodynamic Models from the Generalized van der
Waals
Partition Function.
16.1 The Statistical Mechanical Background.
16.2 Application of the Generalized van der Waals Partition Function to
Pure Fluids.
16.3 Equation of State for Mixtures from the Generalized van der Waals
Partition Function.
16.4 Activity Coefficient Models from the Generalized van der Waals
Partition Function.
16.5 Chain Molecules and Polymers.
16.6 Hydrogen-bonding and Associating Fluids.
Problems.
1.1 Probabistic Description.
1.2 Macrostates and Microstates.
1.3 Quantum Mechanics Description of Microstates.
1.4 The Postulates of Statistical Mechanics.
1.5 The Boltzmann Energy Distribution.
2. The Canonical Partition Function.
2.1 Some Properties of the Canonical Partition Function.
2.2 Relationship of the Canonical Partition Function to Thermodynamic
Properties.
2.3 Canonical Partition Function for a Molecule with Several Independent
Energy Modes.
2.4 Canonical Partition Function for a Collection of Noninteracting
Identical Atoms.
Problems.
3. The Ideal Monatomic Gas.
3.1 Canonical Partition Function for the Ideal Monatomic Gas.
3.2 Identification of b as 1/kT.
3.3 General Relationships of the Canonical Partition Function to Other
Thermodynamic Quantities.
3.4 The Thermodynamic Properties of the Ideal Monatomic Gas.
3.5 Energy Fluctuations in the Canonical Ensemble.
3.6 The Gibbs Entropy Equation.
3.7 Translational State Degeneracy.
3.8 Distinguishability, Indistinguishability and the Gibbs' Paradox.
3.9 A Classical Mechanics - Quantum Mechanics Comparison: The
Maxwell-Boltzmann Distribution of Velocities.
Problems.
4. Ideal Polyatomic Gas.
4.1 The Partition Function for an Ideal Diatomic Gas.
4.2 The Thermodynamic Properties of the Ideal Diatomic Gas.
4.3 The Partition Function for an Ideal Polyatomic Gas.
4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas.
4.5 The Heat Capacities of Ideal Gases.
4.6 Normal Mode Analysis: the Vibrations of a Linear Triatomic Molecule.
Problems.
5. Chemical Reactions in Ideal Gases.
5.1 The Non-Reacting Ideal Gas Mixture.
5.2 Partition Function of a Reacting Ideal Chemical Mixture.
5.3 Three Different Derivations of the Chemical Equilibrium Constant in an
Ideal Gas Mixture.
5.4 Fluctuations in a Chemically Reacting System.
5.5 The Chemically Reacting Gas Mixture. The General Case.
5.6 An Example. The Ionization of Argon.
Problems.
6. Other Partition Functions.
6.1 The Microcanonical Ensemble.
6.2 The Grand Canonical Ensemble.
6.3 The Isobaric-Isothermal Ensemble.
6.4 The Restricted Grand or Semi Grand Canonical Ensemble.
6.5 Comments on the Use of Different Ensembles.
Problems.
7. Interacting Molecules in a Gas.
7.1 The Configuration Integral.
7.2 Thermodynamic Properties from the Configuration Integral.
7.3 The Pairwise Additivity Assumption.
7.4 Mayer Cluster Function and Irreducible Integrals.
7.5 The Virial Equation of State.
7.6 The Virial Equation of State for Polyatomic Molecules.
7.7 Thermodynamic Properties from the Virial Equation of State.
7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical
Ensemble.
7.9 Range of Applicability of the Virial Equation.
Problems.
8. Intermolecular Potentials and the Evaluation of the Second Virial
Coefficient.
8.1 Interaction Potentials for Spherical Molecules.
8.2 Interaction Potentials Between Unlike Atoms.
8.3 Interaction Potentials for Nonspherical Molecules.
8.4 Engineering Applications/Implications of the Virial Equation of State.
Problems.
9. Monatomic Crystals.
9.1 The Einstein Model of a Crystal.
9.2 The Debye Model of a Crystal.
9.3 Test of the Einstein and Debye Models for a Crystal.
9.4 Sublimation Pressures of Crystals.
9.5 A Comment of the Third Law of Thermodynamics.
Problems.
10. Simple Lattice Models of Fluids.
10.1 Introduction.
10.2 Development of Equations of State from Lattice Theory.
10.3 Activity Coefficient Models for Similar Size Molecules from Lattice
Theory.
10.4 Flory-Huggins and Other Models for Polymer Systems.
10.5 The Ising Model.
Problems.
11. Interacting Molecules in a Dense Fluid. Configurational Distribution
Functions.
11.1 Reduced Spatial Probability Density Functions.
11.2 Thermodynamic Properties from the Pair Correlation Function.
11.3 The Pair Correlation Function (Radial Distribution Function) at Low
Density.
11.4 Methods of Determination of the Pair Correlation Function at High
Density
11.5 Fluctuations in the Number of Particles and the Compressibility
Equation
11.6 Determination of the Radial Distribution Function of Fluids using
Coherent X-ray or Neutron Scattering.
11.7 Determination of the Radial Distribution Functions of Molecular
Liquids.
11.8 Determination of the Coordination Number from the Radial Distribution
Function.
11.9 Determination of the Radial Distribution Function of Colloids and
Proteins.
Problems.
12. Integral Equation Theories for the Radial Distribution Function.
12.1 The Potential of Mean Force.
12.2 The Kirkwood Superposition Approximation.
12.3 The Ornstein-Zernike Equation.
12.4 Closures for the Ornstein-Zernike Equation.
12.5 The Percus-Yevick Equation of State.
12.6 The Radial Distribution Function and Thermodynamic Properties of
Mixtures.
12.7 The Potential of Mean Force.
12.8 Osmotic Pressure and the Potential of Mean Force for Protein and
Colloidal Solutions.
Problems.
13. Computer Simulation.
13.1 Introduction to Molecular Level Simulation.
13.2 Thermodynamic Properties from Molecular Simulation.
13.3 Monte Carlo Simulation.
13.4 Molecular Dynamics Simulation.
Problems.
14. Perturbation Theory.
14.1 Perturbation Theory for the Square-Well Potential.
14.2 First Order Barker-Henderson Perturbation Theory.
14.3 Second Order Perturbation Theory.
14.4 Perturbation Theory Using Other Potentials.
14.5 Engineering Applications of Perturbation Theory.
Problems.
15. Debye-Hückel Theory of Electrolyte Solutions.
15.1 Solutions Containing Ions (and electrons).
15.2 Debye-Hückel Theory.
15.3 The Mean Ionic Activity Coefficient.
Problems.
16. The Derivation of Thermodynamic Models from the Generalized van der
Waals
Partition Function.
16.1 The Statistical Mechanical Background.
16.2 Application of the Generalized van der Waals Partition Function to
Pure Fluids.
16.3 Equation of State for Mixtures from the Generalized van der Waals
Partition Function.
16.4 Activity Coefficient Models from the Generalized van der Waals
Partition Function.
16.5 Chain Molecules and Polymers.
16.6 Hydrogen-bonding and Associating Fluids.
Problems.