44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

Since 1909, when my Differential Geometry of Curves and Surfaces was published, the tensor calculus, which had previously been invented by Ricci, was adopted by Einstein in his General Theory of Relativity, and has been developed further in the study of Riemannian Geometry and various generalizations of the latter. In the present book the tensor calculus of cuclidean 3-space is developed and then generalized so as to apply to a Riemannian space of any number of dimensions. The tensor calculus as here developed is applied in Chapters III and IV to the study of differential geometry of surfaces…mehr

Produktbeschreibung
Since 1909, when my Differential Geometry of Curves and Surfaces was published, the tensor calculus, which had previously been invented by Ricci, was adopted by Einstein in his General Theory of Relativity, and has been developed further in the study of Riemannian Geometry and various generalizations of the latter. In the present book the tensor calculus of cuclidean 3-space is developed and then generalized so as to apply to a Riemannian space of any number of dimensions. The tensor calculus as here developed is applied in Chapters III and IV to the study of differential geometry of surfaces in 3-space, the material treated being equivalent to what appears in general in the first eight chapters of my former book with such additions as follow from the introduction of the concept of parallelism of Levi-Civita and the content of the tensor calculus. Of the many exercises in the book some involve merely direct application of the text, but most of them constitute an extension of it. In the writing of the book I have received valuable assistance and criticism from Professor H. P. Robertson and from my students, Messrs. Isaac Battin, Albert J. Coleman, Douglas R. Crosby, John Giese, Donald C. May, and in particular, Wayne Johnson. The excellent line drawings and half-tone illustrations were conceived and executed by Mr. John H. Lewis.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.