98,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
49 °P sammeln
  • Gebundenes Buch

Experts Plebäski and Krasi¿ski provide a thorough introduction to the tools of general relativity and relativistic cosmology. Assuming familiarity with advanced calculus, classical mechanics, electrodynamics and special relativity, the text begins with a short course on differential geometry, taking a unique top-down approach. Starting with general manifolds on which only tensors are defined, the covariant derivative and affine connection are introduced before moving on to geodesics and curvature. Only then is the metric tensor and the (pseudo)-Riemannian geometry introduced, specialising the…mehr

Produktbeschreibung
Experts Plebäski and Krasi¿ski provide a thorough introduction to the tools of general relativity and relativistic cosmology. Assuming familiarity with advanced calculus, classical mechanics, electrodynamics and special relativity, the text begins with a short course on differential geometry, taking a unique top-down approach. Starting with general manifolds on which only tensors are defined, the covariant derivative and affine connection are introduced before moving on to geodesics and curvature. Only then is the metric tensor and the (pseudo)-Riemannian geometry introduced, specialising the general results to this case. The main text describes relativity as a physical theory, with applications to astrophysics and cosmology. It takes the reader beyond traditional courses on relativity through in-depth descriptions of inhomogeneous cosmological models and the Kerr metric. Emphasis is given to complete and clear derivations of the results, enabling readers to access research articles published in relativity journals.
Autorenporträt
Jerzy Plebäski (1928-2005) was a Polish theoretical physicist best known for his extensive research into general relativity, nonlinear electrodynamics and mathematical physics. He split his time between Warsaw, Poland, and Mexico, his permanent residence from the mid-1970s onwards. He is remembered, among other things, for defining the algebraic classification of the tensor of matter, for finding new solutions of the Einstein equations (for example, the Plebäski-Demiäski metric), formulation of the heavenly equations and the effective field theory relating GR and supergravity, known as Plebäski action. The first part of the book is developed from Plebäski's lecture notes.