Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its…mehr
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, Introduction to Manifolds is also an excellent foundation for Springer GTM 82, Differential Forms in Algebraic Topology.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Loring W. Tu was born in Taipei, Taiwan, and grew up in Taiwan, Canada, and the United States. He attended McGill University and Princeton University as an undergraduate, and obtained his Ph.D. from Harvard University under the supervision of Phillip A. Griffiths. He has taught at the University of Michigan, Ann Arbor, and at Johns Hopkins University, and is currently on the faculty at Tufts University in Massachusetts.
An algebraic geometer by training, he has done research in the interface of algebraic geometry, topology, and differential geometry, including Hodge theory, degeneracy loci, moduli spaces of vector bundles, and equivariant cohomology. He is the coauthor with Raoul Bott of Differential Forms in Algebraic Topology (Springer Graduate Texts in Mathematics 82).
Inhaltsangabe
A Brief Introduction.- Part I. The Euclidean Space.- Smooth Functions on R(N).- Tangent Vectors In R(N) as Derivations.- Alternating K-Linear Functions.- Differential Forms on R(N).- Part II. Manifolds.- Manifolds.- Smooth Maps on A Manifold.- Quotient.- Part III. The Tangent Space.- The Tangent Space.- Submanifolds.- Categories And Functors.- The Image of A Smooth Map.- The Tangent Bundle.- Bump Functions and Partitions of Unity.- Vector Fields.- Part IV. Lie Groups and Lie Algebras.- Lie Groups.- Lie Algebras.- Part V. Differential Forms.- Differential 1-Forms.- Differential K-Forms.- The Exterior Derivative.- Part VI. Integration.- Orientations.- Manifolds With Boundary.- Integration on A Manifold.- Part VII. De Rham Theory.- De Rham Cohomology.- The Long Exact Sequence in Cohomology.- The Mayer-Vietoris Sequence.- Homotopy Invariance.- Computation of De Rham Cohomology.- Proof of Homotopy Invariance.- Appendix A. Point-Set Topology.- Appendix B. Inverse Function Theorem of R(N) And Related Results.- Appendix C. Existence of A Partition of Unity in General.- Appendix D. Solutions to Selected Exercises.- Bibliography.- Index.
A Brief Introduction.- Part I. The Euclidean Space.- Smooth Functions on R(N).- Tangent Vectors In R(N) as Derivations.- Alternating K-Linear Functions.- Differential Forms on R(N).- Part II. Manifolds.- Manifolds.- Smooth Maps on A Manifold.- Quotient.- Part III. The Tangent Space.- The Tangent Space.- Submanifolds.- Categories And Functors.- The Image of A Smooth Map.- The Tangent Bundle.- Bump Functions and Partitions of Unity.- Vector Fields.- Part IV. Lie Groups and Lie Algebras.- Lie Groups.- Lie Algebras.- Part V. Differential Forms.- Differential 1-Forms.- Differential K-Forms.- The Exterior Derivative.- Part VI. Integration.- Orientations.- Manifolds With Boundary.- Integration on A Manifold.- Part VII. De Rham Theory.- De Rham Cohomology.- The Long Exact Sequence in Cohomology.- The Mayer-Vietoris Sequence.- Homotopy Invariance.- Computation of De Rham Cohomology.- Proof of Homotopy Invariance.- Appendix A. Point-Set Topology.- Appendix B. Inverse Function Theorem of R(N) And Related Results.- Appendix C. Existence of A Partition of Unity in General.- Appendix D. Solutions to Selected Exercises.- Bibliography.- Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826