This book introduces the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. Over 250 problems include questions to interest and challenge the most able student and plenty of routine exercises to help familiarize the reader with the basic ideas.
This book introduces the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. Over 250 problems include questions to interest and challenge the most able student and plenty of routine exercises to help familiarize the reader with the basic ideas.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Part I. Mathematical Statements and Proofs: 1. The language of mathematics 2. Implications 3. Proofs 4. Proof by contradiction 5. The induction principle Part II. Sets and Functions: 6. The language of set theory 7. Quantifiers 8. Functions 9. Injections, surjections and bijections Part III. Numbers and Counting: 10. Counting 11. Properties of finite sets 12. Counting functions and subsets 13. Number systems 14. Counting infinite sets Part IV. Arithmetic: 15. The division theorem 16. The Euclidean algorithm 17. Consequences of the Euclidean algorithm 18. Linear diophantine equations Part V. Modular Arithmetic: 19. Congruences of integers 20. Linear congruences 21. Congruence classes and the arithmetic of remainders 22. Partitions and equivalence relations Part VI. Prime Numbers: 23. The sequence of prime numbers 24. Congruence modulo a prime Solutions to exercises.
Part I. Mathematical Statements and Proofs: 1. The language of mathematics 2. Implications 3. Proofs 4. Proof by contradiction 5. The induction principle Part II. Sets and Functions: 6. The language of set theory 7. Quantifiers 8. Functions 9. Injections, surjections and bijections Part III. Numbers and Counting: 10. Counting 11. Properties of finite sets 12. Counting functions and subsets 13. Number systems 14. Counting infinite sets Part IV. Arithmetic: 15. The division theorem 16. The Euclidean algorithm 17. Consequences of the Euclidean algorithm 18. Linear diophantine equations Part V. Modular Arithmetic: 19. Congruences of integers 20. Linear congruences 21. Congruence classes and the arithmetic of remainders 22. Partitions and equivalence relations Part VI. Prime Numbers: 23. The sequence of prime numbers 24. Congruence modulo a prime Solutions to exercises.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826