- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Undergraduate introductory quantum mechanics textbook with a large number of figures and exercises.
Andere Kunden interessierten sich auch für
- Paul TellerAn Interpretive Introduction to Quantum Field Theory48,99 €
- Daniel F. StyerThe Strange World of Quantum Mechanics71,99 €
- Annamaneni PeraiahAn Introduction to Radiative Transfer137,99 €
- Immo AppenzellerIntroduction to Astronomical Spectroscopy48,99 €
- P. G. DrazinIntroduction to Hydrodynamic Stability65,99 €
- Olle HeinonenA Quantum Approach to Condensed Matter Physics124,99 €
- Peter Victor HobbsIntroduction to Atmospheric Chemistry62,99 €
-
-
-
Undergraduate introductory quantum mechanics textbook with a large number of figures and exercises.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 808
- Erscheinungstermin: 1. März 2010
- Englisch
- Abmessung: 244mm x 170mm x 43mm
- Gewicht: 1366g
- ISBN-13: 9780521598415
- ISBN-10: 0521598419
- Artikelnr.: 22366392
- Verlag: Cambridge University Press
- Seitenzahl: 808
- Erscheinungstermin: 1. März 2010
- Englisch
- Abmessung: 244mm x 170mm x 43mm
- Gewicht: 1366g
- ISBN-13: 9780521598415
- ISBN-10: 0521598419
- Artikelnr.: 22366392
F. S. Levin received his undergraduate degree from The Johns Hopkins University and his Ph.D. from University of Maryland. Following post-doctoral positions at Rice University, Brookhaven National Laboratory, and the United Kingdom Atomic Energy Author-ity, he accepted an appointment in the Physics Department at Brown University, where he remained for 31 years until his retirement in 1998.
Preface
Part I. Introductory: 1. The need for a non-classical description of microscopic phenomena
2. Classical concepts and quantal inequivalencies
3. Introducing quantum mechanics: a comparison of the classical stretched string and the quantal box
4. Mathematical background
Part II. The Central Concepts: 5. The postulates of quantum mechanics
6. Applications of the postulates: bound states in one dimension
7. Applications of the postulates: continuum states in one dimension
8. Quantal/classical connections
9. Commuting operators, quantum numbers, symmetry properties
Part III. Systems with Few Degrees of Freedom: 10. Orbital angular momentum
11. Two-particle systems, potential-well bound state problems
12. Electromagnetic fields
13. Intrinsic spin, two-state systems
14. Generalized angular momentum and the coupling of angular momenta
15. Three-dimensional continuum states/scattering
Part IV. Complex Systems: 16. Time-dependent approximation methods
17. Time-independent approximation methods
18. Many degrees of freedom: atoms and molecules
Appendix A. Elements of probability theory
Appendix B. Fourier series and integrals
Appendix C. Solution of Legendre's equation
Appendix D. Fundamental and derived quantities, conversion factors
References.
Part I. Introductory: 1. The need for a non-classical description of microscopic phenomena
2. Classical concepts and quantal inequivalencies
3. Introducing quantum mechanics: a comparison of the classical stretched string and the quantal box
4. Mathematical background
Part II. The Central Concepts: 5. The postulates of quantum mechanics
6. Applications of the postulates: bound states in one dimension
7. Applications of the postulates: continuum states in one dimension
8. Quantal/classical connections
9. Commuting operators, quantum numbers, symmetry properties
Part III. Systems with Few Degrees of Freedom: 10. Orbital angular momentum
11. Two-particle systems, potential-well bound state problems
12. Electromagnetic fields
13. Intrinsic spin, two-state systems
14. Generalized angular momentum and the coupling of angular momenta
15. Three-dimensional continuum states/scattering
Part IV. Complex Systems: 16. Time-dependent approximation methods
17. Time-independent approximation methods
18. Many degrees of freedom: atoms and molecules
Appendix A. Elements of probability theory
Appendix B. Fourier series and integrals
Appendix C. Solution of Legendre's equation
Appendix D. Fundamental and derived quantities, conversion factors
References.
Preface
Part I. Introductory: 1. The need for a non-classical description of microscopic phenomena
2. Classical concepts and quantal inequivalencies
3. Introducing quantum mechanics: a comparison of the classical stretched string and the quantal box
4. Mathematical background
Part II. The Central Concepts: 5. The postulates of quantum mechanics
6. Applications of the postulates: bound states in one dimension
7. Applications of the postulates: continuum states in one dimension
8. Quantal/classical connections
9. Commuting operators, quantum numbers, symmetry properties
Part III. Systems with Few Degrees of Freedom: 10. Orbital angular momentum
11. Two-particle systems, potential-well bound state problems
12. Electromagnetic fields
13. Intrinsic spin, two-state systems
14. Generalized angular momentum and the coupling of angular momenta
15. Three-dimensional continuum states/scattering
Part IV. Complex Systems: 16. Time-dependent approximation methods
17. Time-independent approximation methods
18. Many degrees of freedom: atoms and molecules
Appendix A. Elements of probability theory
Appendix B. Fourier series and integrals
Appendix C. Solution of Legendre's equation
Appendix D. Fundamental and derived quantities, conversion factors
References.
Part I. Introductory: 1. The need for a non-classical description of microscopic phenomena
2. Classical concepts and quantal inequivalencies
3. Introducing quantum mechanics: a comparison of the classical stretched string and the quantal box
4. Mathematical background
Part II. The Central Concepts: 5. The postulates of quantum mechanics
6. Applications of the postulates: bound states in one dimension
7. Applications of the postulates: continuum states in one dimension
8. Quantal/classical connections
9. Commuting operators, quantum numbers, symmetry properties
Part III. Systems with Few Degrees of Freedom: 10. Orbital angular momentum
11. Two-particle systems, potential-well bound state problems
12. Electromagnetic fields
13. Intrinsic spin, two-state systems
14. Generalized angular momentum and the coupling of angular momenta
15. Three-dimensional continuum states/scattering
Part IV. Complex Systems: 16. Time-dependent approximation methods
17. Time-independent approximation methods
18. Many degrees of freedom: atoms and molecules
Appendix A. Elements of probability theory
Appendix B. Fourier series and integrals
Appendix C. Solution of Legendre's equation
Appendix D. Fundamental and derived quantities, conversion factors
References.