- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is the first in a two-volume series that introduces the field of spatial data science. It offers an accessible overview of the methodology of exploratory spatial data analysis. This book is the second in a two-volume series that introduces the field of spatial data science.
Andere Kunden interessierten sich auch für
- Jan LopuszanskiAn Introduction to Symmetry and Supersymmetry in Quantum Field Theory70,99 €
- Robert P HirschIntroduction to Biostatistical Applications in Health Research with Microsoft Office Excel Set162,99 €
- Shefiu Zakariyah (UK University of Derby)Foundation Mathematics for Engineers and Scientists with Worked Examples63,99 €
- Norman MorrisonIntroduction to Fourier Analysis, Solutions Manual88,99 €
- Andrew S C EhrenbergA Primer in Data Reduction128,99 €
- Susan O'ConnellIntroduction to Connections, Grades 6-850,99 €
- Susan O'ConnellIntroduction to Representation, Grades 6-850,99 €
-
-
-
This book is the first in a two-volume series that introduces the field of spatial data science. It offers an accessible overview of the methodology of exploratory spatial data analysis. This book is the second in a two-volume series that introduces the field of spatial data science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 696
- Erscheinungstermin: 30. Mai 2024
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 1700g
- ISBN-13: 9781032713397
- ISBN-10: 1032713399
- Artikelnr.: 70339056
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 696
- Erscheinungstermin: 30. Mai 2024
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 1700g
- ISBN-13: 9781032713397
- ISBN-10: 1032713399
- Artikelnr.: 70339056
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Luc Anselin is the Founding Director of the Center for Spatial Data Science at the University of Chicago, where he is also Stein-Freiler Distinguished Service Professor of Sociology and the College, as well as a member of the Committee on Data Science. He is the creator of the GeoDa software and an active contributor to the PySAL Python open source software library for spatial analysis. He has written widely on topics dealing with the methodology of spatial data analysis, including his classic 1988 text on Spatial Econometrics. His work has been recognized by many awards, such as his election to the U.S. National Academy of Science and the American Academy of Arts and Science.
Volume 1
Chapter 1: Introduction. Chapter 2: Basic Data Operations. Chapter 3: GIS
Operations. Chapter 4: Geovisualization. Chapter 5: Statistical Maps.
Chapter 6: Maps for Rates. Chapter 7: Univariate and Bivariate Data
Exploration. Chapter 8: Multivariate Data Exploration. Chapter 9:
Space-Time Exploration. Chapter 10: Contiguity-Based Spatial Weights.
Chapter 11: Distance-Based Spatial Weights. Chapter 12: Special Weights
Operations. Chapter 13: Spatial Autocorrelation. Chapter 14: Advanced
Global Spatial Autocorrelation. Chapter 15: Nonparametric Spatial
Autocorrelation. Chapter 16: LISA and Local Moran. Chapter 17: Other Local
Spatial Autocorrelation Statistics. Chapter 18: Multivariate Local Spatial
Autocorrelation. Chapter 19: LISA for Discrete Variables. Chapter 20:
Density-Based Clustering Methods. Chapter 21: Postscript - The Limits of
Exploration. Appendices, Bibliography
Volume 2
1. Introduction
Part 1: Dimension Reduction
2. Principal Component Analysis (PCA)
3. Multidimensional Scaling (MDS)
4. Stochastic Neighbor Embedding (SNE)
Part 2: Classic Clustering
5. Hierarchical Clustering Methods
6. Partioning Clustering Methods
7. Advanced Clustering Methods
8. Spectral Clustering
Part 3: Spatial Clustering
9. Spatializing Classic Clustering Methods
10. Spatially Constrained Clustering - Hierarchical Methods
11. Spatially Constrained Clustering - Partitioning Methods
Part 4: Assessment
12. Cluster Validation
Chapter 1: Introduction. Chapter 2: Basic Data Operations. Chapter 3: GIS
Operations. Chapter 4: Geovisualization. Chapter 5: Statistical Maps.
Chapter 6: Maps for Rates. Chapter 7: Univariate and Bivariate Data
Exploration. Chapter 8: Multivariate Data Exploration. Chapter 9:
Space-Time Exploration. Chapter 10: Contiguity-Based Spatial Weights.
Chapter 11: Distance-Based Spatial Weights. Chapter 12: Special Weights
Operations. Chapter 13: Spatial Autocorrelation. Chapter 14: Advanced
Global Spatial Autocorrelation. Chapter 15: Nonparametric Spatial
Autocorrelation. Chapter 16: LISA and Local Moran. Chapter 17: Other Local
Spatial Autocorrelation Statistics. Chapter 18: Multivariate Local Spatial
Autocorrelation. Chapter 19: LISA for Discrete Variables. Chapter 20:
Density-Based Clustering Methods. Chapter 21: Postscript - The Limits of
Exploration. Appendices, Bibliography
Volume 2
1. Introduction
Part 1: Dimension Reduction
2. Principal Component Analysis (PCA)
3. Multidimensional Scaling (MDS)
4. Stochastic Neighbor Embedding (SNE)
Part 2: Classic Clustering
5. Hierarchical Clustering Methods
6. Partioning Clustering Methods
7. Advanced Clustering Methods
8. Spectral Clustering
Part 3: Spatial Clustering
9. Spatializing Classic Clustering Methods
10. Spatially Constrained Clustering - Hierarchical Methods
11. Spatially Constrained Clustering - Partitioning Methods
Part 4: Assessment
12. Cluster Validation
Volume 1
Chapter 1: Introduction. Chapter 2: Basic Data Operations. Chapter 3: GIS
Operations. Chapter 4: Geovisualization. Chapter 5: Statistical Maps.
Chapter 6: Maps for Rates. Chapter 7: Univariate and Bivariate Data
Exploration. Chapter 8: Multivariate Data Exploration. Chapter 9:
Space-Time Exploration. Chapter 10: Contiguity-Based Spatial Weights.
Chapter 11: Distance-Based Spatial Weights. Chapter 12: Special Weights
Operations. Chapter 13: Spatial Autocorrelation. Chapter 14: Advanced
Global Spatial Autocorrelation. Chapter 15: Nonparametric Spatial
Autocorrelation. Chapter 16: LISA and Local Moran. Chapter 17: Other Local
Spatial Autocorrelation Statistics. Chapter 18: Multivariate Local Spatial
Autocorrelation. Chapter 19: LISA for Discrete Variables. Chapter 20:
Density-Based Clustering Methods. Chapter 21: Postscript - The Limits of
Exploration. Appendices, Bibliography
Volume 2
1. Introduction
Part 1: Dimension Reduction
2. Principal Component Analysis (PCA)
3. Multidimensional Scaling (MDS)
4. Stochastic Neighbor Embedding (SNE)
Part 2: Classic Clustering
5. Hierarchical Clustering Methods
6. Partioning Clustering Methods
7. Advanced Clustering Methods
8. Spectral Clustering
Part 3: Spatial Clustering
9. Spatializing Classic Clustering Methods
10. Spatially Constrained Clustering - Hierarchical Methods
11. Spatially Constrained Clustering - Partitioning Methods
Part 4: Assessment
12. Cluster Validation
Chapter 1: Introduction. Chapter 2: Basic Data Operations. Chapter 3: GIS
Operations. Chapter 4: Geovisualization. Chapter 5: Statistical Maps.
Chapter 6: Maps for Rates. Chapter 7: Univariate and Bivariate Data
Exploration. Chapter 8: Multivariate Data Exploration. Chapter 9:
Space-Time Exploration. Chapter 10: Contiguity-Based Spatial Weights.
Chapter 11: Distance-Based Spatial Weights. Chapter 12: Special Weights
Operations. Chapter 13: Spatial Autocorrelation. Chapter 14: Advanced
Global Spatial Autocorrelation. Chapter 15: Nonparametric Spatial
Autocorrelation. Chapter 16: LISA and Local Moran. Chapter 17: Other Local
Spatial Autocorrelation Statistics. Chapter 18: Multivariate Local Spatial
Autocorrelation. Chapter 19: LISA for Discrete Variables. Chapter 20:
Density-Based Clustering Methods. Chapter 21: Postscript - The Limits of
Exploration. Appendices, Bibliography
Volume 2
1. Introduction
Part 1: Dimension Reduction
2. Principal Component Analysis (PCA)
3. Multidimensional Scaling (MDS)
4. Stochastic Neighbor Embedding (SNE)
Part 2: Classic Clustering
5. Hierarchical Clustering Methods
6. Partioning Clustering Methods
7. Advanced Clustering Methods
8. Spectral Clustering
Part 3: Spatial Clustering
9. Spatializing Classic Clustering Methods
10. Spatially Constrained Clustering - Hierarchical Methods
11. Spatially Constrained Clustering - Partitioning Methods
Part 4: Assessment
12. Cluster Validation