V. L. Girko
An Introduction to Statistical Analysis of Random Arrays
V. L. Girko
An Introduction to Statistical Analysis of Random Arrays
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".
Andere Kunden interessierten sich auch für
- Multidimensional Statistical Analysis and Theory of Random Matrices182,99 €
- Thomas KoshyTriangular Arrays with Applications181,99 €
- Yu. L. PavlovRandom Forests106,99 €
- Statistical Sciences134,99 €
- Anders HaldA History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-193574,99 €
- Kevin J HastingsIntroduction to Financial Mathematics122,99 €
- Hemant Kumar PathakAn Introduction to Complex Analysis135,99 €
-
-
-
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".
Produktdetails
- Produktdetails
- Verlag: De Gruyter
- 1998.
- Seitenzahl: 700
- Erscheinungstermin: 1. Dezember 1998
- Englisch
- Abmessung: 246mm x 175mm x 43mm
- Gewicht: 1240g
- ISBN-13: 9783110354775
- ISBN-10: 3110354772
- Artikelnr.: 40327136
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: De Gruyter
- 1998.
- Seitenzahl: 700
- Erscheinungstermin: 1. Dezember 1998
- Englisch
- Abmessung: 246mm x 175mm x 43mm
- Gewicht: 1240g
- ISBN-13: 9783110354775
- ISBN-10: 3110354772
- Artikelnr.: 40327136
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m"(n) is equal to 0(n-1/2) under the condition m"n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index
Frontmatter -- CONTENTS -- List of basic notations and assumptions -- Preface and some historical remarks -- Chapter 1. Introduction to the theory of sample matrices of fixed dimension -- Chapter 2. Canonical equations -- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices -- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices -- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices -- Chapter 6. The first proof of the Strong Circular Law -- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law -- Chapter 8. Rigorous proof of the Strong Elliptic Law -- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries -- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices -- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) -- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix ?m"(n) is equal to 0(n-1/2) under the condition m"n-1?c<1 -- Chapter 13. The First Spacing Law for random symmetric matrices -- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) -- References -- Index