Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Monographs on Statistics and Applied Probability Vol.57
Bradley Efron, Department of Statistics Stanford University and Robert J. Tibshirani, Department of Preventative Medicine and Biostatistics and Department of Statistics, University of Toronto.
Inhaltsangabe
Introduction The Accuracy of a Sample Mean Random Samples and Probabilities The Empirical Distribution Function and the Plug-In Principle Standard Errors and Estimated Standard Errors The Bootstrap Estimate of Standard Error Bootstrap Standard Errors: Some Examples More Complicated Data Structures Regression Models Estimates of Bias The Jackknife Confidence Intervals Based on Bootstrap "Tables" Confidence Intervals Based on Bootstrap Percentiles Better Bootstrap Confidence Intervals Permutation Tests Hypothesis Testing with the Bootstrap Cross-Validation and Other Estimates of Prediction Error Adaptive Estimation and Calibration Assessing the Error in Bootstrap Estimates A Geometrical Representation for the Bootstrap and Jackknife An Overview of Nonparametric and Parametric Inference Further Topics in Bootstrap Confidence Intervals Efficient Bootstrap Computations Approximate Likelihoods Bootstrap Bioequivalence Discussion and Further Topics Appendix: Software for Bootstrap Computations References
Introduction The Accuracy of a Sample Mean Random Samples and Probabilities The Empirical Distribution Function and the Plug-In Principle Standard Errors and Estimated Standard Errors The Bootstrap Estimate of Standard Error Bootstrap Standard Errors: Some Examples More Complicated Data Structures Regression Models Estimates of Bias The Jackknife Confidence Intervals Based on Bootstrap "Tables" Confidence Intervals Based on Bootstrap Percentiles Better Bootstrap Confidence Intervals Permutation Tests Hypothesis Testing with the Bootstrap Cross-Validation and Other Estimates of Prediction Error Adaptive Estimation and Calibration Assessing the Error in Bootstrap Estimates A Geometrical Representation for the Bootstrap and Jackknife An Overview of Nonparametric and Parametric Inference Further Topics in Bootstrap Confidence Intervals Efficient Bootstrap Computations Approximate Likelihoods Bootstrap Bioequivalence Discussion and Further Topics Appendix: Software for Bootstrap Computations References
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826